Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (129)

Advertisement

Research Article Free access | 10.1172/JCI118594

GPI-anchored complement regulatory proteins in seminal plasma. An analysis of their physical condition and the mechanisms of their binding to exogenous cells.

I A Rooney, J E Heuser, and J P Atkinson

Department of Medical Biochemistry, University of Wales College of Medicine, Heath Park, UK.

Find articles by Rooney, I. in: JCI | PubMed | Google Scholar

Department of Medical Biochemistry, University of Wales College of Medicine, Heath Park, UK.

Find articles by Heuser, J. in: JCI | PubMed | Google Scholar

Department of Medical Biochemistry, University of Wales College of Medicine, Heath Park, UK.

Find articles by Atkinson, J. in: JCI | PubMed | Google Scholar

Published April 1, 1996 - More info

Published in Volume 97, Issue 7 on April 1, 1996
J Clin Invest. 1996;97(7):1675–1686. https://doi.org/10.1172/JCI118594.
© 1996 The American Society for Clinical Investigation
Published April 1, 1996 - Version history
View PDF
Abstract

We analyzed and compared the properties of three glycosylphosphatidylinositol (GPI)-anchored proteins. CD59, CD55 (both C regulators), and CDw52, and of the transmembrane C regulator CD46 in seminal plasma (SP). We demonstrated previously that anchor-intact SP CD59 is present on the membranes of vesicles (prostasomes) and that cells acquire this protein during incubation with SP. We now report that this acquisition is due partly to adherence of prostasomes to cells and partly to a second mechanism which may involve micellar intermediates. Using fluorescent labeling, ultracentrifugation, and density gradient centrifugation, virtually all CD46 was present on prostasomes whereas CD59, CD55, AND CDw52 were also detected in a form which remained in the 200,000 g supernatant and equilibrated at higher density than prostasomes in gradients. All three GPI-linked proteins eluted at high molecular mass during size exclusion chromatography of this nonprostasome fraction. As documented by videomicroscopy and biochemical analysis, cells acquired new copies of the GPI-linked proteins during incubation with the nonprostasome fraction as well as with prostasomes. These data demonstrate the presence in SP of a stable population of membrane-free, GPI-linked proteins available for transfer to cells. Binding of these proteins to spermatozoa and pathogens in SP may confer new properties on their membranes including increased resistance to C attack. Finally, our data raise the possibility that lipid-associated GPI-linked proteins may be suitable for therapeutic applications.

Version history
  • Version 1 (April 1, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (129)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts