T Aso, A Shilatifard, J W Conaway, R C Conaway
Wolfram syndrome is a progressive neurodegenerative disorder transmitted in an autosomal recessive mode. We report two Wolfram syndrome families harboring multiple deletions of mitochondrial DNA. The deletions reached percentages as high as 85-90% in affected tissues such as the central nervous system of one patient, while in other tissues from the same patient and from other members of the family, the percentages of deleted mitochondrial DNA genomes were only 1-10%. Recently, a Wolfram syndrome gene has been linked to markers on 4p16. In both families linkage between the disease locus and 4p16 markers gave a maximum multipoint lod score of 3.79 at theta = 0 (P<0.03) with respect to D4S431. In these families, the syndrome was caused by mutations in this nucleus-encoded gene which deleteriously interacts with the mitochondrial genome. This is the first evidence of the implication of both genomes in a recessive disease.
A Barrientos, V Volpini, J Casademont, D Genís, J M Manzanares, I Ferrer, J Corral, F Cardellach, A Urbano-Márquez, X Estivill, V Nunes
1,25(OH)2 Vitamin D3 (VD3) and retinoic acid (RA) function as ligands for nuclear receptors which regulate transcription. Though the cardiovascular system is not thought to represent a classical target for these ligands, it is clear that both cardiac myocytes and vascular smooth muscle cells respond to these agents with changes in growth characteristics and gene expression. In this study we demonstrate that each of these ligands suppresses many of the phenotypic correlates of endothelin-induced hypertrophy in a cultured neonatal rat cardiac ventriculocyte model. Each of these agents reduced endothelin-stimulated ANP secretion in a dose-dependent fashion and the two in combination proved to be more effective than either agent used alone (VD3: 49%; RA:52%; VD3 + RA:80% inhibition). RA, at concentrations known to activate the retinoid X receptor, and, to a lesser extent, VD3 effected a reduction in atrial natriuretic peptide, brain natriuretic peptide, and alpha-skeletal actin mRNA levels. Similar inhibition (VD3:30%; RA:33%; VD3 + RA:59% inhibition) was demonstrated when cells transfected with reporter constructs harboring the relevant promoter sequences were treated with VD3 and/or RA for 48 h. These effects were not accompanied by alterations in endothelin-induced c-fos, c-jun, or c-myc gene expression, suggesting either that the inhibitory locus responsible for the reduction in the mRNA levels lies distal to the activation of the immediate early gene response or that the two are not mechanistically coupled. Both VD3 and RA also reduced [3H]leucine incorporation (VD3:30%; RA:33%; VD3 + RA:45% inhibition) in endothelin-stimulated ventriculocytes and, once again, the combination of the two was more effective than either agent used in isolation. Finally, 1,25(OH)2 vitamin D3 abrogated the increase in cell size seen after endothelin treatment. These findings suggest that the liganded vitamin D and retinoid receptors are capable of modulating the hypertrophic process in vitro and that agents acting through these or similar signaling pathways may be of value in probing the molecular mechanisms underlying hypertrophy.
J Wu, M Garami, T Cheng, D G Gardner
Gelatinolytic metalloproteinases implicated in connective tissue remodeling and tumor invasion are secreted from several types of cells in the form of inactive zymogens. In this report, characterization of gelatinase activity secreted by the BR line of dog mastocytoma cells reveals a phorbol-inducible, approximately 92-kD, Ca2+ - and Zn2+ -dependent proenzyme cleaved over time to smaller, active forms. Incubation of cells with the general serine protease inhibitor, PMSF, prevented proenzyme cleavage and permitted its purification free of activation products. The NH2-terminal 13 amino acids of the purified mastocytoma progelatinase are 50-67% identical to those of human, mouse, and rabbit 92-kD progelatinase (gelatinase B; matrix metalloproteinase-9). Degranulation of mastocytoma cells using ionophore A23187 greatly accelerated proenzyme cleavage, suggesting that a serine protease present in secretory granules hydrolyzed the progelatinase to active fragments. To identify the activating protease, cells were coincubated with ionophore and a panel of selective serine protease inhibitors. Soybean trypsin inhibitor and succinyl-L-Ala-Ala-Pro-Phe-chloromethylketone, which inhibit mast cell chymase, prevented progelatinase activation. Inhibitors of tryptase and dog mast cell protease (dMCP)-3, i.e., aprotinin or bis(5-amidino-2-benzimidazolyl) methane (BABIM), did not. In further experiments using highly purified enzymes, mastocytoma cell chymase activated 92-kD progelatinase in the absence of other enzymes or cofactors; tryptase and dMCP-3, however, had no effect. These data demonstrate that dog mastocytoma cells secrete a metalloproteinase related to progelatinase B that is directly activated outside of the cell by exocytosed chymase, and provide the first demonstration of a cell that activates a matrix metalloproteinase it secretes by cosecreting an activating enzyme. In mastocytomas, this pathway may facilitate tumor invasion of surrounding tissues, and in normal mast cells, it could play a role in tissue remodeling and repair.
K C Fang, W W Raymond, S C Lazarus, G H Caughey
To investigate the respective roles of Th1 and Th2 cells in the pathogenesis of lupus-like autoimmune disease, we have analyzed the spontaneous and antigen-induced productions of IgG1 vs IgG2a and IgG3 subclasses in relation to the mRNA expression of INF-gamma (Th1 cytokine promoting IgG2a and IgG3 production), IL-4 (Th2 cytokine promoting IgG1 production), and IL-10 (Th2 cytokine) in CD4+ T cells from lupus-prone MRL mice. For this purpose, two paired sets of MRL mice were chosen for the comparison of these parameters: (a) MRL-lpr/lpr (lpr for lymphoproliferation) and its recently described substrain with a prolonged survival, termed MRL-lpr/lpr.ll (ll for long lived) and (b) MRL male mice bearing the Yaa (Y-linked autoimmune acceleration) gene (MRL.Yaa) with an accelerated disease and their male counterparts lacking the Yaa gene. We demonstrate herein that the accelerated development of lupus-like autoimmune disease in MRL-lpr/lpr and MRL.Yaa mice, as compared with MRL-lpr/lpr.ll and MRL-+/+ mice, respectively, was correlated with an enhanced expression of IFN-gamma vs IL-4 and IL-10 mRNA in CD4+ T cells, which paralleled with an increase of spontaneous and foreign T cell-dependent antigen-induced productions of IgG2a and IgG3 vs IgG1 antibodies. These data suggest that an imbalance towards Th1 predominance may play a significant role in the acceleration of lupus-like autoimmune disease in MRL mice.
S Takahashi, L Fossati, M Iwamoto, R Merino, R Motta, T Kobayakawa, S Izui
In inflammatory reactions there are complex interactions of protein mediators (cytokines) and mediators derived from lipids. An important event in inflammation is superoxide production, in relation to microbicidal activity as well as tissue damage. We have studied interactions of lipid mediators with a cytokine mediator tumor necrosis factor alpha (TNF) in stimulating superoxide production by human neutrophils for this reason and because it throws light on intracellular signals activating this response. Pretreatment of neutrophils with TNF markedly augmented the amount of superoxide produced in response to AA but not to either a 20 carbon saturated fatty acid, or the hydroxy- or hydroperoxy-derivatives of AA. Not only were other polyunsaturated fatty acids (eicosapentanoic, docosahexaenoic, linolenic, linoleic acid) as effective as AA but so was the monounsaturated fatty acid, oleic acid. Indeed TNF primed the neutrophils for an increased response to a major mediator of inflammation, leukotriene B4, which is a product of AA metabolism via the lipoxygenase pathway. The data demonstrate that two major types of mediators generated during an inflammatory response have synergistic action on neutrophils in the generation of reactive oxygen species. In contrast, neutrophils primed with TNF and challenged with PGE2, a product of AA metabolism via the cyclooxygenase pathway, showed a reduced chemiluminescence response. This identifies an important interaction between unsaturated lipids and cytokines which is likely to play a critical role in disease processes and nutrient modulation of the immune responses.
Y Li, A Ferrante, A Poulos, D P Harvey
We studied the alterations in skeletal muscle protein breakdown in long lasting sepsis using a rat model that reproduces a sustained and reversible catabolic state, as observed in humans. Rats were injected intravenously with live Escherichia coli; control rats were pair-fed to the intake of infected rats. Rats were studied in an acute septic phase (day 2 postinfection), in a chronic septic phase (day 6), and in a late septic phase (day 10). The importance of the lysosomal, Ca2+ -dependent, and ubiquitin-proteasome proteolytic processes was investigated using proteolytic inhibitors in incubated epitrochlearis muscles and by measuring mRNA levels for critical components of these pathways. Protein breakdown was elevated during the acute and chronic septic phases (when significant muscle wasting occurred) and returned to control values in the late septic phase (when wasting was stopped). A nonlysosomal and Ca2+ -independent process accounted for the enhanced proteolysis, and only mRNA levels for ubiquitin and subunits of the 20 S proteasome, the proteolytic core of the 26 S proteasome that degrades ubiquitin conjugates, paralleled the increased and decreased rates of proteolysis throughout. However, increased mRNA levels for the 14-kD ubiquitin conjugating enzyme E2, involved in substrate ubiquitylation, and for cathepsin B and m-calpain were observed in chronic sepsis. These data clearly support a major role for the ubiquitin-proteasome dependent proteolytic process during sepsis but also suggest that the activation of lysosomal and Ca2+ -dependent proteolysis may be important in the chronic phase.
L Voisin, D Breuillé, L Combaret, C Pouyet, D Taillandier, E Aurousseau, C Obled, D Attaix
To assess the effect of targeted myocardial beta-adrenergic receptor (AR) stimulation on relaxation and phospholamban regulation, we studied the physiological and biochemical alterations associated with overexpression of the human beta2-AR gene in transgenic mice. These mice have an approximately 200-fold increase in beta-AR density and a 2-fold increase in basal adenylyl cyclase activity relative to negative littermate controls. Mice were catheterized with a high fidelity micromanometer and hemodynamic recordings were obtained in vivo. Overexpression of the beta2-AR altered parameters of relaxation. At baseline, LV dP/dt(min) and the time constant of LV pressure isovolumic decay (Tau) in the transgenic mice were significantly shorter compared with controls, indicating markedly enhanced myocardial relaxation. Isoproterenol stimulation resulted in shortening of relaxation velocity in control mice but not in the transgenic mice, indicating maximal relaxation in these animals. Immunoblotting analysis revealed a selective decrease in the amount of phospholamban protein, without a significant change in the content for either sarcoplasmic reticulum Ca2+ ATPase or calsequestrin, in the transgenic hearts compared with controls. This study indicates that myocardial relaxation is both markedly enhanced and maximal in these mice and that conditions associated with chronic beta-AR stimulation can result in a selective reduction of phospholamban protein.
H A Rockman, R A Hamilton, L R Jones, C A Milano, L Mao, R J Lefkowitz
We examined mechanisms that protect host defense cells from their cytotoxic effector molecules. Human neutrophil peptides (HNP) 1-3 are microbicidal and cytotoxic defensins, initially synthesized as 94-amino acid preproHNP(1-94), cotranslationally proteolyzed to proHNP(20-94), then converted by removal of the anionic propiece to mature HNP(65-94)(HNP-1 and -3) and HNP(66-94) (HNP-2). We hypothesized that during synthesis and subcellular sorting the anionic propiece inhibits the cytotoxicity of the cationic defensin. We expressed preproHNP-1 cDNA in recombinant baculovirus-infected insect cells that secreted the normally transient proHNP-1(20-94) into the medium. Cyanogen bromide cleaved proHNP-1(20-94) at the fortuitously located Met64 to yield mature recombinant HNP-1(65-94) and unlinked propiece. Recombinant and native HNP-1 purified from PMN were identical as judged by mass spectrometry, retention time in reverse-phase high performance liquid chromatography, migration on acid-urea polyacrylamide gels, and reaction with a conformation-specific antibody. Recombinant and native HNP-1 had comparable microbicidal activity towards Listeria monocytogenes and were similarly potent in permeabilizing K562 leukemia cells, but proHNP-1(20-94) was virtually inactive in both assays. Addition of unlinked propiece (proHNP-1(20-64) with Met64-->homoserine) inhibited the bactericidal and cell-permeabilizing activity of mature HNP-1 in a dose-dependent manner. Linked, and to a lesser extent unlinked, propiece interfered with the binding of HNP-1 to target cells. The propiece thus acts as an efficient intramolecular inhibitor of defensin HNP-1 cytotoxicity.
E V Valore, E Martin, S S Harwig, T Ganz
In an effort to identify genetic factors contributing to atherogenesis, we have studied inbred strains of mice that are susceptible (C57BL/6J) and resistant (C3H/HeJ) to diet-induced aortic fatty streak lesions. When maintained on a low-fat diet, HDL isolated from both strain C57BL/6J (B6) and C3H/HeJ (C3H) mice protect against LDL oxidation in a coculture model of the artery wall. However, when maintained on an atherogenic diet high in fat and cholesterol, the HDL isolated from B6 mice lose the capacity to protect, whereas HDL from C3H mice protect equally well. Associated with the loss in the ability of HDL to protect is a decrease in the activity of serum paraoxonase, a serum esterase carried on HDL that has previously been shown to protect against LDL oxidation in vitro. The levels of paraoxonase mRNA decreased in B6 mice upon challenge with the atherogenic diet but increased in C3H, indicating that paraoxonase production is under genetic control. In a set of recombinant inbred strains derived from the B6 and C3H parental strains, low paraoxonase mRNA levels segregated with aortic lesion development, supporting a role for paraoxonase in atherogenesis.
D M Shih, L Gu, S Hama, Y R Xia, M Navab, A M Fogelman, A J Lusis
This study using sampling of blood from the portal vein, in addition to arterial and hepatic sites, to estimate separately spillovers of norepinephrine from mesenteric organs and the liver in seven patients undergoing upper abdominal surgery. Conventional measurements in arterial and hepatic venous plasma provided a measure of net hepatomesenteric NE spillover (403 pmol/ml) that indicated a 13% contribution of these organs to total body spillover of NE into systemic plasma (3,071+/-518 pmol/min). The net hepatomesenteric spillover of NE into systemic plasma was much lower than the spillover of NE from mesenteric organs into portal venous plasma (1,684+/-418 pmol/min). This and the hepatic spillover of NE into systemic plasma (212+/-72 pmol/min) indicated a considerable combined spillover of NE from hepatomesenteric organs (1,896+/-455 pmol/min). The sum of the latter estimate with the difference between total body and net hepatomesenteric NE spillovers provided an adjusted total body spillover of NE into both systemic and portal venous plasma (4,564+/-902 pmol/min). Mesenteric organs made a 37% contribution, and the liver made a 5% contribution to the adjusted total body spillover of NE. Thus, a substantial proportion of total body sympathetic outflow is directed towards mesenteric organs; this is obscured by efficient hepatic extraction of NE (86+/-6%) when measurements are restricted to arterial and hepatic venous plasma.
A Aneman, G Eisenhofer, L Olbe, J Dalenbäck, P Nitescu, L Fändriks, P Friberg
Rat pancreatic AR42J cells possess exocrine and neuroendocrine properties. Activin A induces morphological changes and converts them into neuron-like cells. In activin-treated cells, mRNA for pancreatic polypeptide (PP) but not that for either insulin or glucagon was detected by reverse transcription-PCR. About 25% of the cells were stained by anti-PP antibody. When AR42J cells were incubated with betacellulin, a small portion of the cells were stained positively with antiinsulin and anti-PP antibodies. The effect of betacellulin was dose dependent, being maximal at 2 nM. Approximately 4% of the cells became insulin positive at this concentration, and mRNAs for insulin and PP were detected. When AR42J cells were incubated with a combination of betacellulin and activin A, approximately 10% of the cells became insulin positive. Morphologically, the insulin-positive cells were composed of two types of cells: neuron-like and round-shaped cells. Immunoreactive PP was found in the latter type of cells. The mRNAs for insulin, PP, glucose transporter 2, and glucokinase, but not glucagon, were detected. Depolarizing concentration of potassium, tolbutamide, carbachol, and glucagon-like peptide-1 stimulated the release of immunoreactive insulin. These results indicate that betacellulin and activin A convert amylase-secreting AR42J cells into cells secreting insulin. AR42J cells provide a model system to study the formation of pancreatic endocrine cells.
H Mashima, H Ohnishi, K Wakabayashi, T Mine, J Miyagawa, T Hanafusa, M Seno, H Yamada, I Kojima
Clearance of the hepatitis B virus (HBV) during acute hepatitis is associated with a strong, polyclonal, multispecific cytotoxic T lymphocyte (CTL) response to the viral envelope, nucleocapsid and polymerase proteins that persists for decades after clinical recovery. In contrast, chronically infected patients usually fail to mount a strong CTL response to this virus. In this study we demonstrate that chronically infected patients who experience a spontaneous or interferon-induced remission develop a CTL response to HBV that is similar in strength and specificity to patients who have recovered from acute hepatitis. The results suggest that specific immunotherapeutic enhancement of the CTL response to HBV should be possible in chronically infected patients, and that it could lead to viral clearance in these individuals with resolution of chronic liver disease.
B Rehermann, D Lau, J H Hoofnagle, F V Chisari
The production of interleukin 1beta (IL-1beta) by human hematopoietic stem/progenitor cells was studied to explore the concept that these cells are not merely responders to stimuli from their microenvironment, but can themselves produce a powerful biomodulator. Cells with a CD34+ CD45RA(lo) CD71(lo) phenotype were purified from human umbilical cord blood and cultured one per well in serum-free medium with a mixture of cytokines. Cells that had divided over 2-5 d to form doublets were identified and the daughter cells were studied individually. 91% (460/506) of daughter cells had clonogenic potential. Analysis of these individual daughter cells by reverse transcription-polymerase chain reaction showed that 29% of them (14/48) were positive for IL-1beta mRNA. One of the cells that was strongly positive for IL-1beta mRNA had a sibling that generated 366,000 cells of multiple lineages after 14 d. IL-1beta converting enzyme mRNA, which is necessary to produce IL-1beta, was also detected by reverse transcription-polymerase chain reaction at the single-cell level. Moreover, enzyme immunoassay for mature secreted IL-1beta in culture supernatants demonstrated the production of IL-1beta protein by these cells. This was confirmed by fluorescent immunostaining of the cells for human IL-1beta which showed a significant portion of positive cells. Taken together, the results demonstrate the capacity of early hematopoietic cells to synthesize IL-1beta. The capacity of human hematopoietic stem/progenitor cells to produce IL-1beta may be involved in regulation of their proliferation and differentiation under certain circumstances and dysregulation of this process may be modified in leukemogenesis.
K Watari, H Mayani, F Lee, W Dragowska, P M Lansdorp, J W Schrader
We analyzed and compared the properties of three glycosylphosphatidylinositol (GPI)-anchored proteins. CD59, CD55 (both C regulators), and CDw52, and of the transmembrane C regulator CD46 in seminal plasma (SP). We demonstrated previously that anchor-intact SP CD59 is present on the membranes of vesicles (prostasomes) and that cells acquire this protein during incubation with SP. We now report that this acquisition is due partly to adherence of prostasomes to cells and partly to a second mechanism which may involve micellar intermediates. Using fluorescent labeling, ultracentrifugation, and density gradient centrifugation, virtually all CD46 was present on prostasomes whereas CD59, CD55, AND CDw52 were also detected in a form which remained in the 200,000 g supernatant and equilibrated at higher density than prostasomes in gradients. All three GPI-linked proteins eluted at high molecular mass during size exclusion chromatography of this nonprostasome fraction. As documented by videomicroscopy and biochemical analysis, cells acquired new copies of the GPI-linked proteins during incubation with the nonprostasome fraction as well as with prostasomes. These data demonstrate the presence in SP of a stable population of membrane-free, GPI-linked proteins available for transfer to cells. Binding of these proteins to spermatozoa and pathogens in SP may confer new properties on their membranes including increased resistance to C attack. Finally, our data raise the possibility that lipid-associated GPI-linked proteins may be suitable for therapeutic applications.
I A Rooney, J E Heuser, J P Atkinson
Recent studies indicate that the transcription factor c-Myc contributes to oncogenesis by altering the expression of genes involved in cell proliferation, but its precise function in neoplasia remains ambiguous. The ability of c-Myc to bind the sequence CAC(G/A)TG and transactivate appears to be linked to its transforming activity; however, c-Myc also represses transcription in vitro through a pyrimidine-rich cis element termed the initiator (Inr). In transfection experiments using the adenoviral major late (adML) promoter, which contains two Myc binding sites and an Inr, we determined that c-Myc represses transcription through the initiator in vivo. This activity requires the dimerization domain and amino acids 106 to 143, which are located within the transactivation domain and are necessary for neoplastic transformation. We studied a lymphoma-derived c-Myc substitution mutation at 115-Phe, which is within the region required for transcriptional suppression, and found the mutant more effective than wild-type c-Myc in transforming rodent fibroblasts and in suppressing the adML promoter. Our studies of both loss-of-function and gain-of-function c-Myc mutations suggest a link between c-Myc-mediated neoplastic transformation and transcriptional repression through the Inr.
L A Lee, C Dolde, J Barrett, C S Wu, C V Dang
Pancreatic carboxyl ester lipase (CEL) hydrolyzes cholesteryl esters (CE), triglycerides (TG), and lysophospholipids, with CE and TG hydrolysis stimulated by cholate. Originally thought to be confined to the gastrointestinal system, CEL has been reported in the plasma of humans and other mammals, implying its potential in vivo to modify lipids associated with LDL, HDL (CE, TG), and oxidized LDL (lysophosphatidylcholine, lysoPC). We measured the concentration of CEL in human plasma as 1.2+/-0.5 ng/ml (in the range reported for lipoprotein lipase). Human LDL and HDL3 reconstituted with radiolabeled lipids were incubated with purified porcine CEL without or with cholate (10 or 100 microM, concentrations achievable in systemic or portal plasma, respectively). Using a saturating concentration of lipoprotein-associated CE (4 microM), with increasing cholate concentration there was an increase in the hydrolysis of LDL- and HDL3-CE; at 100 microM cholate, the present hydrolysis per hour was 32+/-2 and 1.6+/-0.1, respectively, indicating that CEL interaction varied with lipoprotein class. HDL3-TG hydrolysis was also observed, but was only approximately 5-10% of that for HDL3-CE at either 10 or 100 microM cholate. Oxidized LDL (OxLDL) is enriched with lysoPC, a proatherogenic compound. After a 4-h incubation with CEL, the lysoPC content of OxLDL was depleted 57%. Colocalization of CEL in the vicinity of OxLDL formation was supported by demonstrating in human aortic homogenate a cholate-stimulated cholesteryl ester hydrolytic activity inhibited by anti-human CEL IgG. We conclude that CEL has the capability to modify normal human LDL and HDL composition and structure and to reduce the atherogenicity of OxLDL by decreasing its lysoPC content.
R Shamir, W J Johnson, K Morlock-Fitzpatrick, R Zolfaghari, L Li, E Mas, D Lombardo, D W Morel, E A Fisher
Proteolytically cleaved receptors, typified by the functional thrombin receptor (TR), represent a novel class of receptors that mediate signaling events by functional coupling to G proteins. Northern blot analysis completed with a human proteinase activated receptor-2 (PAR-2) cDNA as probe demonstrated the approximately 3.5kb PAR-2 transcript in total cellular RNA from human umbilical vein endothelial cells (HUVEC). Microspectrofluorimetry using Fura2-loaded HUVEC demonstrated a dose-dependent elevation in intracellular calcium transients ([Ca2+]i) to murine PAR39-44 (SLIGRL, putative neoligand after cleavage), with an approximate EC50 of 30 microM, and evidence for homologous desensitization with complete recovery at 45 min. Xenopus oocytes microinjected with TR cRNA failed to respond to 200 microM PAR39-44, and TR-targeted antisense oligonucleotides specifically abrogated thrombin-induced but not PAR39-44-mediated [Ca2+]i, excluding the possibility that TR/PAR-2 cell-surface coexpression was structurally linked. HUVEC incubated with PAR39-44 demonstrated a dose- and time-dependent mitogenic response similar to that seen with thrombin or TR42-47 (TR-activating peptide, SFLLRN). Preactivation of HUVEC with either PAR39-44 or thrombin resulted in heterologous desensitization to the corresponding agonist, an effect that was mediated primarily by TR internalization as evaluated by immunofluorescence and quantitative ELISA. These results ascribe a previously unrecognized function to the PAR-2 receptor, imply that a natural enzyme agonist may circulate in plasma, and suggest the presence of an additional regulatory mechanism controlling receptor activation events in vascular endothelial cells.
H Mirza, V Yatsula, W F Bahou
Nuclear factor-kappa B (NF-kappaB)/Rel transcription factors play an important role in the inducible regulation of a variety of genes involved in the inflammatory and proliferative responses of cells. The present study was designed to elucidate the implication of NF-kappaB/Rel in the pathogenesis of atherosclerosis. Activation of the dimeric NF-kappaB complex is regulated at a posttranslational level and requires the release of the inhibitor protein IkappaB. The newly developed mAb alpha-p65mAb recognizes the IkappaB binding region on the p65 (RelA) DNA binding subunit and therefore selectively reacts with p65 in activated NF-kappaB. Using immunofluorescence and immunohistochemical techniques, activated NF-kappaB was detected in the fibrotic-thickened intima/media and atheromatous areas of the atherosclerotic lesion. Activation of NF-kappaB was identified in smooth muscle cells, macrophages, and endothelial cells. Little or no activated NF-kappaB was detected in vessels lacking atherosclerosis. Electrophoretic mobility shift assays and colocalization of activated NF-kappaB with NF-kappaB target gene expression suggest functional implications for this transcription factor in the atherosclerotic lesion. This study demonstrates the presence of activated NF-kappaB in human atherosclerotic tissue for the first time. Atherosclerosis, characterized by features of chronic inflammation and proliferative processes, may be a paradigm for the involvement of NF-kappaB/Rel in chronic inflammatory disease.
K Brand, S Page, G Rogler, A Bartsch, R Brandl, R Knuechel, M Page, C Kaltschmidt, P A Baeuerle, D Neumeier
p21(WAF1/CIP1/SDI1), an inhibitor of cyclin-dependent kinases, is expressed at varying levels in human adrenal glands removed during surgery or organ recovery. In glands with p21 mRNA, nuclear p21 immunoreactivity, which was occasionally extensive, colocalized with p53 immunoreactivity and DNA damage, as evidenced by in situ end-labeling. Many cells showed morphological features of apoptosis when observed by fluorescent DNA dye staining and electron microscopy. This pattern was also associated with high levels of cytoplasmic heat shock protein 70. To address the question of the origin of p21 expression in some human adrenal glands, rat adrenal glands were subjected to 30 min of ischemia followed by 8 h of reperfusion. Cells with nuclear p21 and p53 appeared in the adrenal cortex together with DNA damage detected by in situ end-labeling. Nuclear p21 immunoreactivity was also produced in adrenal tissue fragments incubated at 37 degrees C in vitro. However, in this case, p21 expression was confined to the cut edge of the tissue. In contrast, p21 in human adrenal glands, as in ischemic rat glands, was within the inner regions of the cortex, supporting an origin of the protein in vivo rather than postmortem. The p53/p21 pathway of reaction to cellular injury, potentially leading to apoptosis, may play a role in tissue damage such as that resulting from ischemia/reperfusion. In the human adrenal cortex this process may be a precursor of adrenal failure.
V V Didenko, X Wang, L Yang, P J Hornsby
Bone marrow is the principal site for osteoclastogenesis and osteoblastogenesis; and an increase in the former has been linked with bone loss caused by acute loss of gonadal steroids. We have now used an established murine model of accelerated senescence and osteopenia (SAMP6) to test the hypothesis that reduced osteoblastogenesis is linked with decreased bone mass. At 1 mo of age, the number of osteoblast progenitors in SAMP6 marrow was indistinguishable from controls; however a threefold decrease was found at 3-4 mo of age. Impaired osteoblast formation was temporally associated with decreased bone formation and decreased bone mineral density, as determined by histomorphometric analysis of tetracycline-labeled cancellous bone and dual-energy x-ray absorptiometry, respectively. Osteoclastogenesis determined in ex vivo bone marrow cultures was also decreased in these mice, as was the number of osteoclasts in histologic sections. Moreover, unlike controls, senescence-accelerated mice failed to increase osteoclast development after gonadectomy. The osteoclastogenesis defeat was secondary to impaired osteoblast formation as evidenced by the fact that osteoclastogenesis could be restored by addition of osteoblastic cells from normal mice. These findings provide the first demonstration of a link between low bone mineral density and decreased osteoblastogenesis in the bone marrow and validate the senescence-accelerated mouse as a model of involutional osteopenia.
R L Jilka, R S Weinstein, K Takahashi, A M Parfitt, S C Manolagas
Defects in insulin stimulation of blood flow have been used suggested to contribute to insulin resistance. To directly test whether glucose uptake can be altered by changing blood flow, we infused bradykinin (27 microgram over 100 min), an endothelium-dependent vasodilator, into the femoral artery of 12 normal subjects (age 25+/-1 yr, body mass index 22+/-1 kg/m2) after an overnight fast (n = 5) and during normoglycemic hyperinsulinemic (n = 7) conditions (serum insulin 465+/-11 pmol/liter, 0-100 min). Blood flow was measured simultaneously in both femoral regions using [15O]-labeled water ([15O]H2O) and positron emission tomography (PET), before and during (50 min) the bradykinin infusion. Glucose uptake was measured immediately after the blood flow measurement simultaneously in both femoral regions using [18F]-fluoro-deoxy-glucose ([18F]FDG) and PET. During hyperinsulinemia, muscle blood flow was 58% higher in the bradykinin-infused (38+/-9 ml/kg muscle x min) than in the control leg (24+/-5, P<0.01). Femoral muscle glucose uptake was identical in both legs (60.6+/-9.5 vs. 58.7+/-9.0 micromol/kg x min, bradykinin-infused vs control leg, NS). Glucose extraction by skeletal muscle was 44% higher in the control (2.6+/-0.2 mmol/liter) than the bradykinin-infused leg (1.8+/-0.2 mmol/liter, P<0.01). When bradykinin was infused in the basal state, flow was 98% higher in the bradykinin-infused (58+/-12 ml/kg muscle x min) than the control leg (28+/-6 ml/kg muscle x min, P<0.01) but rates of muscle glucose uptake were identical in both legs (10.1+/-0.9 vs. 10.6+/-0.8 micromol/kg x min). We conclude that bradykinin increases skeletal muscle blood flow but not muscle glucose uptake in vivo. These data provide direct evidence against the hypothesis that blood flow is an independent regulator of insulin-stimulated glucose uptake in humans.
P Nuutila, M Raitakari, H Laine, O Kirvelä, T Takala, T Utriainen, S Mäkimattila, O P Pitkänen, U Ruotsalainen, H Iida, J Knuuti, H Yki-Järvinen
Although anti-DNA autoantibodies are an important hallmark of lupus, the relationships among anti-DNA structure, reactivity, and pathogenicity have not been fully elucidated. To further investigate these relationships, we compare the variable genes and primary structure of eight anti-DNA mAbs previously obtained from an MRL/MpJ-lpr/lpr mouse along with the ability of three representative mAbs to induce nephritis in nonautoimmune mice using established adoptive transfer protocols. One monospecific anti-single-stranded (ss) DNA (11F8) induces severe diffuse proliferative glomerulonephritis in nonautoimmune mice whereas another anti-ssDNA with apparently similar in vitro binding properties (9F11) and an anti-double-stranded DNA (4B2) are essentially benign. These results establish a murine model of anti-DNA-induced glomerular injury resembling the severe nephritis seen in lupus patients and provide direct evidence that anti-ssDNA can be more pathogenic than anti-double-stranded DNA. In vitro binding experiments using both protein-DNA complexes and naive kidney tissue indicate that glomerular localization of 11F8 may occur by recognition of a planted antigen in vivo. Binding to this antigen is DNase sensitive which suggests that DNA or a DNA-containing molecule is being recognized.
P C Swanson, R L Yung, N B Blatt, M A Eagan, J M Norris, B C Richardson, K J Johnson, G D Glick
In this study, we have investigated CD40 expression in human peripheral blood eosinophils and in human chronically inflamed nasal tissues, i.e., nasal polyps. We show by both reverse transcriptase-PCR and Northern blot analysis that eosinophils from allergic subjects express human CD40 mRNA. We also show that constitutive CD40 mRNA expression in eosinophils could be upregulated by exposure to IgA immune complexes and downregulated by IL-10 and the synthetic steroid budesonide. In addition, we demonstrate that eosinophils express CD40 protein by flow cytometry. Such expression is biologically functional as cross-linking CD40 with CD40 mAbs enhances eosinophil survival in a dose-dependent fashion; in addition, CD40 ligation stimulates eosinophils to release GM-CSF. CD40-mediated eosinophil survival was largely inhibited by an anti-GM-CSF neutralizing antibody suggesting GM-CSF involvement in the survival enhancing mechanism. CD40 mRNA was also detected in total RNA extracted from nasal polyp tissues but not in RNA isolated from normal nasal mucosa (inferior turbinate); by immunohistochemistry, we were able to detect immunoreactive CD40 protein in a variety of cell types in the polyp stroma, but primarily in eosinophils. These observations suggest previously unforeseen interactions between eosinophils and cells expressing the CD40 ligand and, thus, novel pathways by which eosinophils may contribute to the regulation of airway inflammation.
Y Ohkawara, K G Lim, Z Xing, M Glibetic, K Nakano, J Dolovich, K Croitoru, P F Weller, M Jordana
Premature and extensive atheroscleroses involving renal, peripheral, and cardiovascular sites remain major complications of diabetes mellitus. Controversy exists as to the contribution of hyperglycemia versus elevated local or systemic concentrations of insulin to atherosclerosis risk. In this report, we developed the first murine model susceptible to both atherosclerosis and diabetes to determine which diabetogenic factors contribute to vascular disease. C57BL/6 and BALB/c mice were treated with multiple low-dose streptozotocin (STZ) or control citrate buffer and fed rodent chow or an atherogenic-promoting (Ath) diet for 12-20 wk. STZ treatment resulted in sustained hyperglycemia (250-420 mg/dl) and a modest reduction in plasma insulin levels for both strains regardless of diet. Citrate-treated C57BL/6 mice fed the Ath diet showed extensive oil red O-staining fatty streak aortic sinus lesions (20,537+/-2,957 micron2), the size of which did not differ for Ath-fed mice treated with STZ (16,836+/-2,136 micron2). In contrast, hyperglycemic BALB/c mice fed the Ath diet showed a 17-fold increase in atherosclerotic lesion area (7,922+/-2,096 micron2) as compared with citrate-treated mice fed the Ath diet (467+/-318 micron2). Correlations between lesion size and plasma glucose levels were significant for BALB/c (r = 0.741, P < 0.009), but not C57BL/6 (r = 0.314, P<0.3) mice. Lesion size correlated significantly with plasma cholesterol for C57BL/6 (r = 0.612, P<0.03) but not BALB/c (r = 0.630, P<0.1) mice. Immunohistochemistry showed that aortic sinus lesions from both strains contained macrophages, but smooth muscle cells were clearly present in lesions of BALB/c mice. In summary, we present the first small animal model showing accelerated atherosclerosis in response to hyperglycemia. Fatty streaks resembled those of human type II lesions in that both macrophages and smooth muscle cells were evident. In addition, our results support the concept that hyperglycemia as opposed to hyperinsulinemia contributes heavily to risk of atherosclerosis.
V V Kunjathoor, D L Wilson, R C LeBoeuf
The rat gamma-glutamyl transferase mRNA transcripts I, II, and III are derived from three alternative promoters, P(I), P(II), and P(III). In the adult only mRNA III is expressed in the lung. We show that mRNA III gene expression is developmentally regulated in the fetal lung; it is first expressed in gestation. In contrast to the adult lung, the fetal lung expresses mRNA I, II, and III. The switch from the fetal to the adult pattern of gammaGT mRNA expression begins within the first 24 h of birth and is complete by 10 d of age. gammaGT mRNA II disappears within 24 h, mRNA I disappears by 10 d leaving mRNA III as the sole transcript. Alveolar epithelial type 2 cells (AT2) isolated from the adult lung express only mRNA III. When cultured in 21% O2 mRNA III is maintained, but when cultured in 3% O2 the fetal pattern of mRNA I, II and III expression is induced. When AT2 cells in hypoxia are exposed to carbon monoxide, mRNA II is suppressed suggesting that a heme-binding protein (responsive to oxygen) may suppress mRNA II expression and may be responsible for the decrease in lung mRNA II seen after birth. A reporter gene under the control of DNA sequences from the gammaGT P(III) promoter is activated in transient transfection studies in response to hyperoxia, while a deletion construct retaining an antioxidant responsive element is not. Oxygen appears to regulate each of the alternative promoters of the gammaGT gene, such that P(II) is rapidly repressed by a heme-dependent mechanism, P(I), is more gradually repressed by a nonheme mechanism and P(III) is activated by a putative oxygen response element. We hypothesize that similar oxygen-dependent mechanisms regulate other genes in the developing lung at birth.
M Joyce-Brady, S M Oakes, D Wuthrich, Y Laperche
Mutations in beta or gamma subunit of the epithelial sodium channel (ENaC) have been found to cause a hereditary form of human hypertension, Liddle syndrome. Most of the mutations reported are either nonsense mutations or frame shift mutations which would truncate the cytoplasmic carboxyl terminus of the beta or gamma subunits of the channel, suggesting that these domains are important for the normal regulation of this channel. We sequenced ENaC in a family with Liddle syndrome and found a missense mutation in beta subunit which predicts substitution of Tyr by His at codon 618, 2 bp downstream from a missense mutation (P616L) that has been reported recently. Presence of this mutation correlates with the clinical manifestations (hypertension, hypokalemia, suppressed aldosterone secretion) in this kindred. Functional expression studies in the Xenopus oocytes revealed constitutive activation of the Y618H mutant indistinguishable from that observed for the deletion mutant (R564stop) identified in the original pedigree of Liddle. Our data suggest that the region between Pro616 and Tyr618 is critically important for regulation of ENaC activity.
H Tamura, L Schild, N Enomoto, N Matsui, F Marumo, B C Rossier