We have characterized the mechanism whereby a G protein-coupled receptor, the alpha 1-adrenergic receptor, promotes cellular AA release via the activation of phospholipase A2 (PLA2) in Madin-Darby canine kidney (MDCK-D1) cells. Stimulation of cells with the receptor agonist epinephrine or with the protein kinase C (PKC) activator PMA increased AA release in intact cells and the activity of PLA2 in subsequently prepared cell lysates. The effects of epinephrine were mediated by alpha 1-adrenergic receptors since they were blocked by the alpha 1-adrenergic antagonist prazosin. Epinephrine- and PMA-promoted AA release and activation of the PLA2 were inhibited by AACOCF3, an inhibitor of the 85-kD cPLA2. The 85-kD cPLA2 could be immunoprecipitated from the cell lysate using a specific anti-cPLA2 serum. Enhanced cPLA2 activity in cells treated with epinephrine or PMA could be recovered in such immunoprecipitates, thus directly demonstrating that alpha 1-adrenergic receptors activate the 85-kD cPLA2. Activation of cPLA2 in cell lysates by PMA or epinephrine could be reversed by treatment of lysates with exogenous phosphatase. In addition, both PMA and epinephrine induced a molecular weight shift, consistent with phosphorylation, as well as an increase in activity of mitogen-activated protein (MAP) kinase. The time course of epinephrine-promoted activation of MAP kinase preceded that of the accumulation of released AA and correlated with the time course of cPLA2 activation. Down-regulation of PKC by overnight incubation of cells with PMA or inhibition of PKC with the PKC inhibitor sphingosine blocked the stimulation of MAP kinase by epinephrine and, correspondingly, epinephrine-promoted AA release was inhibited under these conditions. Similarly, blockade of MAP kinase stimulation by the MAP kinase cascade inhibitor PD098059 inhibited epinephrine-promoted AA release. The sensitivity to Ca2+ was similar, although the maximal activity of cPLA2 was enhanced by treatment of cells with epinephrine or PMA. The data thus demonstrate that in MDCK-D1 cells alpha 1-adrenergic receptors regulate AA release through phosphorylation-dependent activation of the 85-kD cPLA2 by MAP kinase subsequent to activation of PKC. This may represent a general mechanism by which G protein-coupled receptors stimulate AA release and formation of products of AA metabolism.
M Xing, P A Insel
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 112 | 17 |
52 | 19 | |
Citation downloads | 41 | 0 |
Totals | 205 | 36 |
Total Views | 241 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.