Treatment of quiescent rat aortic smooth muscle cells with either alpha-thrombin or a thrombin receptor-derived agonist peptide (SFLLRNP) resulted in pronounced increases in [3H]thymidine incorporation that were concentration dependent and reached a maximum of approximately 15-fold above serum-starved controls. However, in contrast to FBS, PDGF-BB, or basic fibroblast growth factor (bFGF), that initiated DNA synthesis promptly after 16-19 h, thymidine incorporation in response to thrombin was delayed by an additional 3-6 h. Delayed mitogenesis correlated with the appearance of a potent mitogenic activity in conditioned media samples obtained from thrombin-stimulated rat aortic smooth muscle cells, as assayed using Swiss 3T3 fibroblasts. This activity was not inhibited by neutralizing antibodies directed against PDGF or bFGF. Furthermore, in the Swiss 3T3 cells, simple addition of either alpha-thrombin or SFLLRNP failed to elicit a significant mitogenic response. In signal transduction studies, both thrombin and SFLLRNP treatment led to rapid tyrosine phosphorylation of proteins with apparent molecular masses of 42, 44, 75, 120, and 190 kD, respectively, as assessed by antiphosphotyrosine immunoblotting. The overall pattern of protein tyrosine phosphorylation was distinct from that observed after PDGF-BB addition. Activation of Raf-1 and the mitogen-activated protein (MAP) kinases p44mapk and p42mapk was also observed. However, the time course and duration of Raf-1/MAP kinase activation after thrombin stimulation were similar to those elicited by PDGF-BB. Taken together, our results indicate that thrombin-stimulated vascular smooth muscle proliferation is delayed and requires the de novo expression of one or more autocrine mitogens. In addition, the rapid induction of discrete intracellular signaling mechanisms by thrombin, including the Raf-1/MAP kinase pathway, appears to be insufficient alone to promote vascular smooth muscle cell mitogenesis.
C J Molloy, J E Pawlowski, D S Taylor, C E Turner, H Weber, M Peluso
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 105 | 14 |
49 | 12 | |
Citation downloads | 44 | 0 |
Totals | 198 | 26 |
Total Views | 224 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.