Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (31)

Advertisement

Research Article Free access | 10.1172/JCI118405

Functional magnetic resonance imaging reveals brain regions mediating the response to resistive expiratory loads in humans.

D Gozal, O Omidvar, K A Kirlew, G M Hathout, R B Lufkin, and R M Harper

Department of Neurobiology, University of California, Los Angeles School of Medicine 90095, USA.

Find articles by Gozal, D. in: JCI | PubMed | Google Scholar

Department of Neurobiology, University of California, Los Angeles School of Medicine 90095, USA.

Find articles by Omidvar, O. in: JCI | PubMed | Google Scholar

Department of Neurobiology, University of California, Los Angeles School of Medicine 90095, USA.

Find articles by Kirlew, K. in: JCI | PubMed | Google Scholar

Department of Neurobiology, University of California, Los Angeles School of Medicine 90095, USA.

Find articles by Hathout, G. in: JCI | PubMed | Google Scholar

Department of Neurobiology, University of California, Los Angeles School of Medicine 90095, USA.

Find articles by Lufkin, R. in: JCI | PubMed | Google Scholar

Department of Neurobiology, University of California, Los Angeles School of Medicine 90095, USA.

Find articles by Harper, R. in: JCI | PubMed | Google Scholar

Published January 1, 1996 - More info

Published in Volume 97, Issue 1 on January 1, 1996
J Clin Invest. 1996;97(1):47–53. https://doi.org/10.1172/JCI118405.
© 1996 The American Society for Clinical Investigation
Published January 1, 1996 - Version history
View PDF
Abstract

Obstructive lung disease is the most common form of respiratory disturbance. However, the location of brain structures underlying the ventilatory response to resistive expiratory loads is unknown in humans. To study this issue, midsagittal magnetic resonance images were acquired in eight healthy volunteers before and after application of a moderate resistive expiratory load (30 cmH2O/liter/s), using functional magnetic resonance imaging (fMRI) strategies (1.5-T magnetic resonance; repetition time: 72 ms; echo time: 45 ms; flip angle: 30 degrees; field of view: 26 cm; slice thickness: 5 mm; 128 x 256 x 1 number of excitations). Digital image subtractions and region of interest analyses revealed significant increases in fMRI signal intensity in discrete areas of the ventral medulla, ventral and dorsal pontomedullary structures, basal forebrain, and cerebellum. Upon load withdrawal, a rapid fMRI signal off-transient occurred in all activated sites. Application of an identical load immediately after recovery from the initial stimulus resulted in smaller signal increases (P < 0.02). Prolongation of load duration was associated with progressive fMRI signal decrease across activated regions. In three additional subjects, the threshold for significant MRI signal increases was established at expiratory loads > or = 15 cmH2O/liter/s and was dose dependent with increasing loads. We conclude that resistive expiratory loads > or = 15 cmH2O/liter/s elicit regional activation of discrete brain locations in humans.

Version history
  • Version 1 (January 1, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (31)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts