Obstructive lung disease is the most common form of respiratory disturbance. However, the location of brain structures underlying the ventilatory response to resistive expiratory loads is unknown in humans. To study this issue, midsagittal magnetic resonance images were acquired in eight healthy volunteers before and after application of a moderate resistive expiratory load (30 cmH2O/liter/s), using functional magnetic resonance imaging (fMRI) strategies (1.5-T magnetic resonance; repetition time: 72 ms; echo time: 45 ms; flip angle: 30 degrees; field of view: 26 cm; slice thickness: 5 mm; 128 x 256 x 1 number of excitations). Digital image subtractions and region of interest analyses revealed significant increases in fMRI signal intensity in discrete areas of the ventral medulla, ventral and dorsal pontomedullary structures, basal forebrain, and cerebellum. Upon load withdrawal, a rapid fMRI signal off-transient occurred in all activated sites. Application of an identical load immediately after recovery from the initial stimulus resulted in smaller signal increases (P < 0.02). Prolongation of load duration was associated with progressive fMRI signal decrease across activated regions. In three additional subjects, the threshold for significant MRI signal increases was established at expiratory loads > or = 15 cmH2O/liter/s and was dose dependent with increasing loads. We conclude that resistive expiratory loads > or = 15 cmH2O/liter/s elicit regional activation of discrete brain locations in humans.
D Gozal, O Omidvar, K A Kirlew, G M Hathout, R B Lufkin, R M Harper
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 101 | 18 |
46 | 14 | |
Citation downloads | 40 | 0 |
Totals | 187 | 32 |
Total Views | 219 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.