The poor ability of mammalian central nervous system (CNS) axons to regenerate has been attributed, in part, to astrocyte behavior after axonal injury. This behavior is manifested by the limited ability of astrocytes to migrate and thus repopulate the injury site. Here, the migratory behavior of astrocytes in response to injury of CNS axons in vivo was simulated in vitro using a scratch-wounded astrocytic monolayer and soluble substances derived from injured rat optic nerves. The soluble substances, applied to the scratch-wounded astrocytes, blocked their migration whereas some known wound-associated factors such as transforming growth factor-beta 1 (TGF-beta 1), basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), transforming growth factor-alpha (TGF-alpha), and heparin-binding epidermal growth factor in combination with insulin-like growth factor-1 (HB-EGF + IGF-1) stimulated intensive migration with consequent closure of the wound. Migration was not dominated by proliferating cells. Both bFGF and HB-EGF + IGF-1, but not TGF-beta 1, could overcome the blocking effect of the optic nerve-derived substances on astrocyte migration. The induced migration appeared to involve proteoglycans. It is suggestive that appropriate choice of growth factors at the appropriate postinjury period may compensate for the endogenous deficiency in glial supportive factors and/or presence of glial inhibitory factors in the CNS.
A Faber-Elman, A Solomon, J A Abraham, M Marikovsky, M Schwartz
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 165 | 38 |
51 | 34 | |
Citation downloads | 48 | 0 |
Totals | 264 | 72 |
Total Views | 336 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.