The goal of this study was to determine to what extent aging affects the antioxidant defense system of the rat adrenal and to evaluate the impact of any change in this system on the recognized age-related decline in steroidogenic capacity of adrenocortical cells. The studies were conducted on young (2-5 mo) and aging (12-27 mo) Sprague-Dawley rats and involved procedures measuring steroidogenesis; oxidative damage to tissue; non enzymatic antioxidants such as vitamin C, E, and glutathione; and tissue antioxidant enzyme (Mn and CuZn superoxide dismutases, catalase, and glutathione peroxidase) activity and expression (mRNA, protein mass, and location). Some measurements were made also on rats maintained on vitamin E-deficient diets. The data show that adrenals from young animals are especially well protected against oxidative events; i.e., these adrenals show the least endogenous lipid peroxidation and the highest level of resistance to prooxidant-induced damage (of various tissues measured) and show exceedingly high levels of tissue antioxidants. Aging, on the other hand, results in oxidative changes in adrenal tissue that are generally linked in time to a reduction in efficiency of the normally protective antioxidant defense system and to the decline in corticosterone production. We speculate that these events are causally related, i.e., that the age-related reduction in oxidative mechanisms in adrenal tissues leads to oxidative damage of membrane or cytosolic factors important to cholesterol transport, and, as a consequence of this damage, cholesterol cannot reach appropriate mitochondrial cholesterol side chain cleavage sites, and corticosterone production fails.
S Azhar, L Cao, E Reaven