The development of progressive glomerulosclerosis in the renal ablation model has been ascribed to a number of humoral and hemodynamic events, including the peptide growth factor, transforming growth factor-beta 1 (TGF-beta 1). An important role has also been attributed to angiotensin II (AII), which, in addition to its hemodynamic effects, can stimulate transcription of TGF-beta 1. We postulated that increased glomerular production of AII, resulting from enhanced intrinsic angiotensinogen expression, stimulates local TGF-beta 1 synthesis, activating glomerular matrix protein synthesis, and leads to sclerosis. Using in situ reverse transcription, the glomerular cell sites of alpha-1 (IV) collagen, fibronectin, laminin B1, angiotensinogen, and TGF-beta 1 mRNA synthesis were determined at sequential periods following renal ablation. The early hypertrophic phase was associated with global, but transient, increases in the mRNA for alpha-1 (IV) collagen. No changes were noted for fibronectin, TGF-beta 1, and angiotensinogen mRNAs. At 24 d after ablation, at which time sclerosis is not evident, endothelial cells, particularly in the dilated capillaries at the vascular pole, expressed angiotensinogen and TGF-beta 1 mRNAs, as well as fibronectin and laminin B1 RNA transcripts. By 74 d after ablation angiotensinogen and TGF-beta 1 mRNAs were widely distributed among endothelial and mesangial cells, and were particularly prominent in regions of evolving sclerosis. These same regions were also notable for enhanced expression of matrix protein mRNAs, particularly fibronectin. All receptor blockade inhibited angiotensinogen, TGF-beta 1, fibronectin, and laminin B1 mRNA expression by the endothelium. We conclude that, as a result of hemodynamic changes, injured or activated endothelium synthesizes angiotensinogen, triggering a cascade of TGF-beta 1 and matrix protein gene expression with resultant development of the segmental glomerular sclerotic lesion.
L K Lee, T W Meyer, A S Pollock, D H Lovett
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 218 | 0 |
77 | 48 | |
Figure | 0 | 8 |
Scanned page | 410 | 17 |
Citation downloads | 60 | 0 |
Totals | 765 | 73 |
Total Views | 838 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.