Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Identification of a contractile function for renal medullary interstitial cells.
A K Hughes, … , W H Barry, D E Kohan
A K Hughes, … , W H Barry, D E Kohan
Published July 1, 1995
Citation Information: J Clin Invest. 1995;96(1):411-416. https://doi.org/10.1172/JCI118050.
View: Text | PDF
Research Article

Identification of a contractile function for renal medullary interstitial cells.

  • Text
  • PDF
Abstract

Renomedullary interstitial cells (RMIC) are unique to the renal medulla. By virtue of their anatomic location and arrangement, RMIC may hinder axial dissipation of the concentration gradient, thereby aiding urinary concentration. A more active role in urinary concentration has been postulated on the basis of speculations about RMIC contractile potential, however, RMIC contraction has not been investigated. To determine if these cells are contractile, cultured rat RMIC were exposed to endothelin-1 (ET-1), a potent vasoconstrictor which binds to RMIC, and examined using video microscopy. ET-1 (as low as 10 pM) caused a slowly developing and dose-dependent reduction in RMIC surface area. ET-1 markedly increased the number and intensity of F-actin microfilament staining. ET-1-induced RMIC contraction was not altered by nifedipine, was partially reduced by nickel, and was completely inhibited by H7, indicating that ET-1 action is mediated by protein kinase C and is partially dependent upon receptor-operated calcium channels. The ET-1 effect does not involve nitric oxide since NG-monomethyl-L-arginine did not alter ET-1-induced RMIC contraction; in addition, ET-1 had only a minor effect on cGMP levels and no effect on nitrite production. PGE2 acts in an autocrine manner to dampen ET action since indomethacin potentiates, while PGE2 inhibits, ET-1-induced RMIC contraction. The contractile response is not unique to ET-1 since vasopressin also reduces RMIC surface area and increases F-actin microfiliment staining. These studies demonstrate that RMIC in culture are contractile. The possibility is raised that contraction of RMIC plays a role in modifying urinary concentration as well as regulation of other renal medullary functions.

Authors

A K Hughes, W H Barry, D E Kohan

×

Full Text PDF

Download PDF (1.67 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts