Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
2'3'-Dideoxycytidine-induced thymic lymphoma correlates with species-specific suppression of a subpopulation of primitive hematopoietic progenitor cells in mouse but not rat or human bone marrow.
R D Irons, … , D B Som, W S Stillman
R D Irons, … , D B Som, W S Stillman
Published June 1, 1995
Citation Information: J Clin Invest. 1995;95(6):2777-2782. https://doi.org/10.1172/JCI117981.
View: Text | PDF
Research Article

2'3'-Dideoxycytidine-induced thymic lymphoma correlates with species-specific suppression of a subpopulation of primitive hematopoietic progenitor cells in mouse but not rat or human bone marrow.

  • Text
  • PDF
Abstract

The nucleoside analogue, 2',3'-dideoxycytidine (ddC), is a potent inhibitor of HIV replication, and AIDS patients receiving ddC experience clinical improvement without significant hematologic toxicity. Repeated ddC administration (1,000 mg/kg per day) for 13 wk produces an increased incidence of thymic lymphoma in B6C3F1 mice. Previous studies reveal a common link between chemically induced and genetically associated models of mouse thymic lymphoma that involves a defect in a subpopulation of primitive hematopoietic progenitor cells. This defect is characterized by suppression of a subpopulation of IL-3-responsive cells and ablation of stem cell factor synergy with GM-CSF. The present study was undertaken to ascertain whether ddC produces the same pattern of bone marrow toxicity in mice, and whether this effect is observed in rat and human bone marrow. ddC exposure in vivo and in vitro produced a select suppression of murine CFU identical to that previously described for other models of mouse thymic lymphoma. In contrast, this selective CFU suppression was not observed in rat and human bone marrow or in CD34+ cells. These studies suggest that the mouse may not be a good predictive model for ddC hematotoxicity in humans and that susceptibility to the development of thymic lymphoma may be unique to the mouse.

Authors

R D Irons, A T Le, D B Som, W S Stillman

×

Full Text PDF

Download PDF (1.04 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts