Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells.
B V Khan, … , R W Alexander, R M Medford
B V Khan, … , R W Alexander, R M Medford
Published March 1, 1995
Citation Information: J Clin Invest. 1995;95(3):1262-1270. https://doi.org/10.1172/JCI117776.
View: Text | PDF
Research Article

Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells.

  • Text
  • PDF
Abstract

Early features in the pathogenesis of atherosclerosis include accumulation of oxidized LDL (oxLDL) and endothelial expression of the vascular adhesion molecule VCAM-1. Because antioxidants inhibit endothelial VCAM-1 expression, we tested the hypothesis that oxLDL functions as a prooxidant signal in atherogenesis to augment VCAM-1 activation by inflammatory signals. Cultured human aortic endothelial cells (HAECs) or human umbilical vein endothelial cells (HUVECs) were incubated with unmodified LDL, oxLDL, or glycated LDL for 48 h. No change in VCAM-1, intercellular cell adhesion molecule-1 (ICAM-1), or E-selectin expression from control was observed by ELISA. However, dose-response and time course studies demonstrated that oxLDL enhanced VCAM-1 expression induced by the cytokin tumor necrosis factor alpha (TNF alpha) 63% in HAECs and 45% in HUVECs over unmodified LDL or control. Using flow cytometry analysis, oxLDL augmented TNF alpha-induced VCAM-1 expression in a uniform HAEC population. oxLDL had no effect on E-selection induction. oxLDL augmented TNF alpha-induced ICAM-1 expression 44% in HAECs but not in HUVECs. Glycated LDL augmented TNF alpha-induced VCAM-1 expression 35% in HAECs but not HUVECs. Similar results were obtained with 13-HPODE or lysophosphatidylcholine, significant components of oxLDL. 13-HPODE augmented TNF alpha-induced mRNA accumulation and transcriptional activation of VCAM-1 in HAECs. These results suggest that as long-term regulatory signals, specific oxidized fatty acid and phospholipid components of oxLDL augment the ability of vascular endothelial cells to express cytokine-mediated VCAM-1. These studies link oxidant signals conferred by oxLDL to oxidation-sensitive regulatory mechanisms controlling the expression of endothelial cell adhesion molecules involved in early atherosclerosis.

Authors

B V Khan, S S Parthasarathy, R W Alexander, R M Medford

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 354 5
PDF 60 41
Scanned page 347 5
Citation downloads 65 0
Totals 826 51
Total Views 877
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts