Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI117718

The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins. Role of alpha v beta 3 in smooth muscle cell migration to osteopontin in vitro.

L Liaw, M P Skinner, E W Raines, R Ross, D A Cheresh, S M Schwartz, and C M Giachelli

Department of Pathology, University of Washington, Seattle 98195.

Find articles by Liaw, L. in: JCI | PubMed | Google Scholar

Department of Pathology, University of Washington, Seattle 98195.

Find articles by Skinner, M. in: JCI | PubMed | Google Scholar

Department of Pathology, University of Washington, Seattle 98195.

Find articles by Raines, E. in: JCI | PubMed | Google Scholar

Department of Pathology, University of Washington, Seattle 98195.

Find articles by Ross, R. in: JCI | PubMed | Google Scholar

Department of Pathology, University of Washington, Seattle 98195.

Find articles by Cheresh, D. in: JCI | PubMed | Google Scholar

Department of Pathology, University of Washington, Seattle 98195.

Find articles by Schwartz, S. in: JCI | PubMed | Google Scholar

Department of Pathology, University of Washington, Seattle 98195.

Find articles by Giachelli, C. in: JCI | PubMed | Google Scholar

Published February 1, 1995 - More info

Published in Volume 95, Issue 2 on February 1, 1995
J Clin Invest. 1995;95(2):713–724. https://doi.org/10.1172/JCI117718.
© 1995 The American Society for Clinical Investigation
Published February 1, 1995 - Version history
View PDF
Abstract

Osteopontin is an arginine-glycine-aspartate containing acidic glycoprotein postulated to mediate adhesion, migration, and biomineralization in diverse tissues. The mechanisms explaining this multifunctionality are not well understood, although it is known that one osteopontin receptor is the alpha v beta 3 integrin. In this work, we studied human smooth muscle cells varying in alpha v beta 3 levels to identify additional osteopontin receptors. We report that, in addition to alpha v beta 3, both alpha v beta 5 and alpha v beta 1 are osteopontin receptors. Moreover, the presence or absence of alpha v beta 3 on the cell surface altered the adhesive and migratory responses of smooth muscle cells to osteopontin. Adhesion of alpha v beta 3-deficient cell populations to osteopontin was only half that of cells containing alpha v beta 3, and migration toward an osteopontin gradient in the Boyden chamber was dependent on cell surface alpha v beta 3. Although alpha v beta 3-deficient smooth muscle cells were unable to migrate to osteopontin, they did migrate significantly in response to vitronectin and fibronectin. These findings represent the first description of alpha v beta 5 and alpha v beta 1 as osteopontin receptors and suggest that, while adhesion to osteopontin is supported by integrins containing beta 1, beta 3, and beta 5, migration in response to osteopontin appears to depend on alpha v beta 3. Thus, interaction with distinct receptors is one mechanism by which osteopontin may initiate multiple functions.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 713
page 713
icon of scanned page 714
page 714
icon of scanned page 715
page 715
icon of scanned page 716
page 716
icon of scanned page 717
page 717
icon of scanned page 718
page 718
icon of scanned page 719
page 719
icon of scanned page 720
page 720
icon of scanned page 721
page 721
icon of scanned page 722
page 722
icon of scanned page 723
page 723
icon of scanned page 724
page 724
Version history
  • Version 1 (February 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts