Restenosis occurs in 35% of patients within months after balloon angioplasty, due to a fibroproliferative response to vascular injury. These studies describe a combined fibrosuppressive/antiproliferative strategy on smooth muscle cells cultured from human primary atherosclerotic and restenotic coronary arteries and from normal rat aortas. L-Mimosine suppressed the posttranslational hydroxylation of the precursors for collagen and for eukaryotic initiation factor-5A (eIF-5A) by directly inhibiting the specific protein hydroxylases involved, prolyl 4-hydroxylase (E.C. 1.14.11.2) and deoxyhypusyl hydroxylase (E.C. 1.14.99.29), respectively. Inhibition of deoxyhypusyl hydroxylation correlated with a dose-dependent inhibition of DNA synthesis. Inhibition of prolyl hydroxylation caused a dose-dependent reduction in the secretion of hydroxyproline-containing protein and decreased the formation of procollagen types I and III. The antifibroproliferative action could not be attributed to nonspecific or toxic effects of mimosine, appeared to be selective for the hydroxylation step in the biosynthesis of the procollagens and of eIF-5A, and was reversible upon removal of the compound. The strategy of targeting these two protein hydroxylases has important implications for the pathophysiology of restenosis and for the development of agents to control fibroproliferative diseases.
T A McCaffrey, K B Pomerantz, T A Sanborn, A M Spokojny, B Du, M H Park, J E Folk, A Lamberg, K I Kivirikko, D J Falcone
To understand the accumulation of plasma cells within RA synovium, the ability of rheumatoid synoviocytes to support the differentiation of B cells into plasma cells was explored. Tonsillar B lymphocytes cultured over confluent monolayers of synoviocytes, secreted threefold more Igs (mainly IgM) than B cells cultured directly on plastic well. More importantly, synoviocytes enhanced by 14-fold the production of Igs (mainly IgG) by B cells costimulated with Staphylococcus aureus Cowan (SAC) particles. IL-10 and, in a lower extent, IL-2 increased Ig secretion in cocultures, and their combination was synergistic. In the presence of SAC, IL-2, and IL-10, synoviocytes increased by 13-884-fold the production of IgG, which reached 0.19 ng/cell per day. RA as well as normal synoviocytes were more potent than other adherent cell lines to support terminal B cell differentiation. Synoviocyte activity involved both a support of B cell survival, and an induction of the terminal differentiation of B cells into mature plasma cells with typical morphology, high levels of intracytoplasmic Igs, and CD20- CD38high surface expression. The present observation should permit the identification of molecules involved in the maturation of B cells into plasma cells, and in their accumulation in rheumatoid synovium.
J Dechanet, P Merville, I Durand, J Banchereau, P Miossec
Vascular smooth muscle cells (SMC) isolated from embyronic and early fetal (e13-e18) rat aortas exhibit an "embryonic growth phenotype" in culture (Cook, C. L., M. C. M. Weiser, P. E. Schwartz, C. L. Jones, and R. A. Majack. 1994. Circ. Res. 74:189-196). Cells in this growth phenotype exhibit autonomous, serum-independent replication, in contrast to SMC in the "adult" growth phenotype, whose proliferation in culture is dependent on exogenous mitogens. To determine which of these two phenotypes is genetically dominant, heterokaryons were constructed between adult and embryonic (day e17) rat aortic SMC. The fused cells were maintained in serum-free medium for 3 d, then were labeled with bromodeoxyuridine (BrdU) for an additional 24 h. Under these conditions, parental e17 SMC exhibited a high rate of self-driven DNA synthesis (73-85% BrdU-positive cells), while parental adult SMC showed minimal replication (13-21% BrdU-positive cells). Homokaryons of parental cells exhibited parental growth phenotypes and showed the expected mitogenic response when stimulated with serum. Heterokaryons between e17 and adult SMC exhibited a nonautonomous growth phenotype; the "adult" growth phenotype was calculated to be dominant in > 89% of all true heterokaryons. The data suggest that adult SMC express molecules capable of genetically extinguishing or otherwise inhibiting the autonomous replication of embryonic SMC.
R A Majack
Apolipoprotein E (apoE) plays a crucial role in lipoprotein metabolism both in plasma and in peripheral tissues. To test whether apoE in the vascular wall has a direct and local effect on atherogenesis, we established transgenic mice expressing human apoE under control of H2 Ld promoter. Studies on mRNA levels and immunohistochemistry demonstrated that this line was characterized by high expression of human apoE in the arterial wall while its expression was relatively low in other tissues as compared with the respective endogenous expression of mouse apoE. They showed no difference in plasma cholesterol levels and lipoprotein profile from controls when fed both normal and atherogenic diets. However, after 24 wk of an atherogenic diet, the formation of fatty streak lesions in proximal aorta was markedly inhibited in transgenic mice as compared with controls. Both lesion area and esterified cholesterol content were < 30% of those in controls. In a tissue cholesterol labeling study with 3H-cholesterol, the specific activity of aorta cholesterol was much less in transgenic mice, suggesting that apoE enhances cholesterol efflux from the aortic wall into plasma. Thus, apoE has anti-atherogenic action which is mediated via enhancing reverse cholesterol transport from arterial wall.
H Shimano, J Ohsuga, M Shimada, Y Namba, T Gotoda, K Harada, M Katsuki, Y Yazaki, N Yamada
The participation of IL-2 in insulin-dependent (type 1) diabetes (IDDM) was analyzed in transgenic (tg) mice expressing the nucleoprotein (NP) of lymphocytic choriomeningitis virus and IL-2 under control of the rat insulin promoter focally in beta cells of the islets of Langerhans. Insertion and expression of the viral (self) gene or of the IL-2 gene alone did not lead to IDDM. Infiltration primarily of CD4 and B lymphocytes and increased expression of MHC class I and II molecules occurred in islets where IL-2 was expressed. By contrast, neither cellular infiltrates nor expression of MHC class I or II glycoproteins above base levels was noted in tgs expressing the viral protein alone. Double tg mice expressing both the viral protein and IL-2 in their islets displayed a modest increase in incidence of spontaneous diabetes compared with that of single transgenic mice expressing IL-2 alone. Breaking of immunological unresponsiveness or sensitization to self antigens did not occur. Neither cytotoxic T lymphocytes (CTL) nor antibodies directed against the viral tg (NP) were generated. However, after challenge with lymphocytic choriomeningitis virus, double tg mice developed anti-self (viral) CTL and IDDM (incidence > 95%) within 2 mo. The generation of virus ("self")-specific MHC-restricted CTL was dependent on CD4+ help. In contrast, viral inoculum to single tg mice expressing either the viral protein or IL-2 failed to enhance the incidence of IDDM over 30% for viral protein or 10% for IL-2 after an 8-mo observation period. Hence, in this autoimmune model in situ expression of IL-2 did not break unresponsiveness but markedly enhanced ongoing disease.
M G von Herrath, J Allison, J F Miller, M B Oldstone
Autoimmune disease results from inflammatory destruction of tissues by aberrant self-reactive lymphocytes. We studied the autoimmune potential of T lymphocytes immunologically ignorant of viral antigens acting as self antigens and whether the host defense molecule IFN-gamma could stimulate these cells to cytotoxic competency. For this purpose, we produced double transgenic mice expressing pancreatic IFN-gamma as well as lymphocytic choriomeningitis virus (LCMV) nucleoprotein (NP) or glycoprotein (GP) antigen. 100% of the NP+/IFN-gamma+ mice became diabetic before 2 mo of age, while none of the NP single transgenic littermates and only 10% of IFN-gamma single transgenic littermates did. Strikingly, NP+/IFN-gamma+ mice spontaneously developed cytotoxic T lymphocyte activity on LCMV-infected targets and vaccinia virus-NP-infected ones without prior LCMV infection but NP+/IFN-gamma- mice did not, which indicates specific sensitization to the viral antigen by IFN-gamma. These results suggest that lymphocytes ignorant of self antigens can be activated by IFN-gamma released after immunologic stimulation such as viral infection. This mechanism may account for the loss of apparent tolerance to self antigens in autoimmune diseases such as insulin-dependent diabetes mellitus.
M S Lee, M von Herrath, H Reiser, M B Oldstone, N Sarvetnick
Genes of interest can be targeted specifically to respiratory epithelial cells in intact animals with high efficiency by exploiting the receptor-mediated endocytosis of the polymeric immunoglobulin receptor. A DNA carrier, consisting of the Fab portion of polyclonal antibodies raised against rat secretory component covalently linked to poly-L-lysine, was used to introduce plasmids containing different reporter genes into airway epithelial cells in vivo. We observed significant levels of luciferase enzyme activity in protein extracts from the liver and lung, achieving maximum values of 13,795 +/- 4,431 and 346,954 +/- 199,120 integrated light units (ILU) per milligram of protein extract, respectively. No luciferase activity was detected in spleen or heart, which do not express the receptor. Transfections using complexes consisting of an irrelevant plasmid (pCMV lacZ) bound to the bona fide carrier or the expression plasmid (pGEMluc) bound to a carrier based on an irrelevant Fab fragment resulted in background levels of luciferase activity in all tissues examined. Thus, only tissues that contain cells bearing the polymeric immunoglobulin receptor are transfected, and transfection cannot be attributed to the nonspecific uptake of an irrelevant carrier-DNA complex. Specific mRNA from the luciferase gene was also detected in the lungs of transfected animals. To determine which cells in the lungs are transfected by this method, DNA complexes were prepared containing expression plasmids with genes encoding the bacterial beta-galactosidase or the human interleukin 2 receptor. Expression of these genes was localized to the surface epithelium of the airways and the submucosal glands, and not the bronchioles and alveoli. Receptor-mediated endocytosis can be used to introduce functional genes into the respiratory epithelium of rats, and may be a useful technique for gene therapy targeting the lung.
T Ferkol, J C Perales, E Eckman, C S Kaetzel, R W Hanson, P B Davis
We studied the molecular basis of transfusion-dependent hemolytic anemia in an infant who rapidly developed the phenotype of beta thalassemia major. DNA sequence of one beta-globin gene of the proband revealed two mutations, one for the moderately unstable hemoglobin (Hb) Köln and another for a novel codon 32 cytosine-thymidine-guanine-->cytosine-adenine-guanine transversion encoding a leucine-->glutamine mutation. A hydrophilic glutamine residue at beta 32 has an uncharged polar side chain that could potentially distort the B helix and provoke further molecular instability. This new hemoglobin was called Hb Medicine Lake. Biosynthesis studies showed a deficit of beta-globin synthesis with early loss of beta-globin chains. An abnormal unstable hemoglobin, globin chain, or tryptic globin peptide was not present, demonstrating the extreme lability of this novel globin. Hb Medicine Lake mRNA was present, but an aberrantly spliced message was not. Absence of an abnormal beta-globin gene in the mother makes it likely that a de novo mutation occurred in the proband. The molecular pathogenesis of Hb Medicine Lake illustrates a mechanism whereby the phenotype of a genetic disorder, like the mild hemolytic anemia associated with a hemoglobinopathy, can be modulated by a coincident mutation in the same gene.
M B Coleman, Z H Lu, C M Smith 2nd, J G Adams 3rd, A Harrell, M Plonczynski, M H Steinberg
The ligand for CD40 (CD40L) is a membrane protein on activated T cells that induces B cell proliferation and differentiation. Several mutations of the CD40L gene were reported responsible for defective class switching of B cells in an X-linked immunodeficiency with hyper IgM (X-HIM). We studied four affected males from three families and found three independent mutations including new mutations of CD40L gene. In every X-HIM patient tested, however, anti-CD40 plus IL-10 did not induce class switching from IgM to IgG or IgA, even in the presence of Staphylococcus aureus Cowan I strain (SAC). CD4+ T cell clones, expressing CD40L on their surface, also did not rescue IgG or IgA induction by X-HIM peripheral blood B cells in vitro. But signaling through CD40 induced both B cell proliferation and IgE secretion when IL-4 was added to the culture. Taken together, these results show that in vitro signaling through CD40 rescues IgE but not IgG or IgA secretion by peripheral blood X-HIM B cells and suggest that in vivo CD40 and CD40L interaction might be necessary for IgG and IgA differentiation in X-HIM.
O Saiki, T Tanaka, Y Wada, H Uda, A Inoue, Y Katada, M Izeki, M Iwata, H Nunoi, I Matsuda
Molecular analysis of dystrophin Kobe showed that exon 19 of the dystrophin gene bearing 52-bp deletion was skipped during splicing, although the known consensus sequences at the 5' and 3' splice sites of exon 19 were maintained (Matsuo, M., T. Masumura, H. Nishio, T. Nakajima, Y. Kitoh, T. Takumi, J. Koga, and H. Nakamura. 1991. J. Clin. Invest. 87:2127-2131). These data suggest that the deleted sequence of exon 19 may function as a cis-acting element for exact splicing for the upstream and downstream introns. To investigate this potential role of exon 19, an in vitro splicing system using artificial dystrophin mRNA precursors (pre-mRNAs) was established. Pre-mRNA containing exon 18, truncated intron 18, and exon 19 was spliced precisely in vitro, whereas splicing of intron 18 was almost completely abolished when the wild-type exon 19 was replaced by the dystrophin Kobe exon 19. Splicing of intron 18 was not fully reactivated when dystrophin Kobe exon 19 was restored to nearly normal length by inserting other sequences into the deleted site. These results suggest that the presence of the exon 19 sequence which is lost in dystrophin Kobe is more critical for splicing of intron 18 than the length of the exon 19 sequence. Characteristically, the efficiency of splicing of this intron seemed to correlate with the presence of polypurine tracks within the downstream exon 19. Moreover, an antisense 31-mer 2'-O-methyl ribonucleotide complementary to the 5' half of the deleted sequence in dystrophin Kobe exon 19 inhibited splicing of wild-type pre-mRNA in a dose- and time-dependent manner. This first in vitro evidence that dystrophin pre-mRNA splicing can be modulated by an antisense oligonucleotide raises the possibility of a new therapeutic approach for Duchenne muscular dystrophy.
Y Takeshima, H Nishio, H Sakamoto, H Nakamura, M Matsuo
The HLA class I-restricted cytotoxic T lymphocyte (CTL) response is a major defense mechanism in viral infections. It has been suggested that the CTL response may contribute to viral clearance and liver cell injury during hepatitis C virus (HCV) infection. To test this hypothesis requires an understanding of the characteristics of HCV-specific cytotoxic effector cells and identification of the target antigens to which they respond. To begin this process we stimulated peripheral blood mononuclear cells (PBMC) from a group of HLA-A2 positive patients with chronic hepatitis C with a panel of 130 HCV-derived peptides containing the HLA-A2 binding motif. Effector cells were tested for their capacity to lyse HLA-A2-matched target cells that were either sensitized with peptide or infected with a vaccinia virus construct containing HCV sequences. Using this approach we have identified nine immunogenic peptides in HCV, three of which are derived from the putative core protein, three from the nonstructural (NS) 3 domain, two from NS4 and one from NS5. Selected responses were shown to be HLA-A2 restricted, mediated by CD8+ T cells and to recognize endogenously synthesized viral antigen. Unexpectedly, peptide-specific CTL responses could also be induced in sero-negative individuals, suggesting in vitro activation of naive CTL precursors. The precursor frequency of peptide-specific CTL was 10 to 100-fold higher in infected patients compared to uninfected controls, and the responses were greatly diminished by removal of CD45 RO+ (memory) T cells. Further quantitative studies are clearly required to establish whether a correlation exists between the HCV-specific CTL response and the clinical course of this disease. Definition of the molecular targets of the human CTL response to HCV creates this opportunity, and may also contribute to the development of a T cell-based HCV vaccine.
A Cerny, J G McHutchison, C Pasquinelli, M E Brown, M A Brothers, B Grabscheid, P Fowler, M Houghton, F V Chisari
The production of potentially pathogenic anti-DNA autoantibodies in SLE is driven by special, autoimmune T helper (Th) cells. Herein, we sequenced the T cell receptor (TCR) alpha and beta chain genes expressed by 42 autoimmune Th lines from lupus patients that were mostly CD4+ and represented the strongest inducers of such autoantibodies. These autoimmune TCRs displayed a recurrent motif of highly charged residues in their CDR3 loops that were contributed by N-nucleotide additions and also positioned there by the recombination process. Furthermore, Th lines from four of the five patients showed a marked increase in the usage of the V alpha 8 gene family. Several independent Th lines expressed identical TCR alpha and/or beta chain sequences indicating again antigenic selection. 10 of these Th lines could be tested further for antigenic specificity. 4 of the 10 pathogenic anti-DNA autoantibody-inducing Th lines responded to the non-histone chromosomal protein HMG and two responded to nucleosomal histone proteins; all presented by HLA-DR molecules. Another Th line responded to purified DNA more than nucleosomes. Thus, these autoimmune Th cells of lupus patients respond to charged epitopes in various DNA-binding nucleoproteins that are probably processed and presented by the anti-DNA B cells they selectively help.
A Desai-Mehta, C Mao, S Rajagopalan, T Robinson, S K Datta
Polyols are reduction products of aldoses and ketoses; their concentrations in tissues can reflect carbohydrate metabolism. Several polyol species were quantitated in cerebrospinal fluid (CSF) and plasma from 10 Down Syndrome (trisomy 21) subjects between the ages of 22 and 63 years (3 of whom were demented) and from 10 healthy age-matched controls, using a gas chromatographic/mass spectrometric technique. The mean CSF concentration and the mean CSF/plasma concentration ratio of myo-inositol were significantly elevated in Down syndrome compared with controls, but were not correlated with the presence of dementia in the Down subjects. Plasma myo-inositol was not significantly altered in these subjects. No significant difference between Down syndrome and controls was found for CSF concentrations of mannitol, sorbitol, galactitol, ribitol, arabitol, or 1,5-anhydrosorbitol, but plasma mannitol, ribitol and arabitol were elevated in Down syndrome. The present observation provides new impetus for studying synthesis and transport of myo-inositol as well as phosphatidylinositol cycle in trisomy 21 disorder.
H U Shetty, M B Schapiro, H W Holloway, S I Rapoport
For nearly two decades it has been suspected that the cutaneous T cell lymphoma, mycosis fungoides (MF), and its leukemic variant, the Sézary syndrome, are caused by the human T lymphotropic virus (HTLV-I/II). Arguments against this concept included the finding that only a small number of MF patients have antibodies to HTLV-I/II and that attempts to detect proviral sequences by mere Southern hybridization of extracted DNA usually met with failure. However, we have reported repeatedly that HTLV-like particles emerge in blood mononuclear cell (PBMC) cultures of practically all patients with this disease. In several instances, the particles were identified as HTLV by immunoelectron microscopy as well as biomolecular analysis. With the assumptions that the virus in MF patients may have become detection by Southern hybridization alone, the extracts of freshly isolated PBMC of 50 consecutive patients were subjected to combined PCR/Southern analysis. Here we report the presence of HTLV pol and/or tax proviral sequences in 46 out of 50 (92%) of the patients tested. In addition, five of the patients, who lacked antibodies to HTLV-I/II structural proteins, were found to be seropositive for tax. It thus seems reasonable to conclude that MF/Sézary syndrome is an HTLV-associated disease and that lack of an immune response does not preclude infection with this type of virus.
B A Pancake, D Zucker-Franklin, E E Coutavas
We have explored the mechanism(s) related to FIAU-induced liver toxicity, particularly focusing on its effect on mitochondrial function in a human hepatoma cell line-HepG2. The potential role of FMAU and FAU, metabolites detected in FIAU-treated patients were also ascertained. FIAU and FMAU inhibited cell growth and were effectively phosphorylated. A substantial increase in lactic acid production in medium of cells incubated with 1-10 microM FIAU or FMAU was consistent with mitochondrial dysfunction. Slot blot analysis demonstrated that a two week exposure to 10 microM FIAU or FMAU was not associated with a decrease in total mitochondrial (mt) DNA content. However, FIAU and FMAU were incorporated into nuclear and mtDNA and relative values suggest that both compounds incorporate at a much higher rate into mtDNA. Electron micrographs of cells incubated with 10 microM FIAU or FMAU revealed the presence of enlarged mitochondria with higher cristae density and lipid vesicles. In conclusion, these data suggest that despite the lack of inhibition of mtDNA content, incorporation of FIAU and FMAU into mtDNA of HepG2 cells leads to marked mitochondrial dysfunction as evidenced by disturbance in cellular energy metabolism and detection of micro- and macrovesicular steatosis.
L Cui, S Yoon, R F Schinazi, J P Sommadossi
Engagement of the T cell receptor molecules with MHC-antigen complexes presented by B cells ascertains antigen specificity in T cell-dependent help. Ligation of MHC molecules on the surface of B cells, however, has not only been implicated in antigen-specific T-B cell interaction, but has also been linked to the induction of B cell apoptosis. To examine the role of T helper cells in either induction of immunoglobulin synthesis or B cell apoptotic death, we have facilitated T cell receptor-MHC interaction through a bacterial superantigen. CD4+ T cell clones could be categorized into two clearly distinct subsets based upon their ability to promote B cell help in the presence of superantigen. One subset of T cell clones supported immunoglobulin synthesis, and thus functioned as effective helper cells. B cells interacting with the second subset of T cells did not differentiate into antibody-secreting cells, but underwent apoptosis. Both types of helper cells were able to provide contact help after anti-CD3 stimulation. Induction of apoptosis was a dominant phenomenon; the addition of the superantigen suppressed immunoglobulin production in B cells activated by anti-CD3-stimulated helper T cells, indicating that the T cells delivered an apoptotic signal to the B cell. T cell clones providing effective MHC restrictive B cell help could be distinguished from T cells facilitating B cell apoptosis based on their lymphokine secretion profile. Induction of B cell apoptosis was a feature of T cells with a TH0 lymphokine pattern. Promotion of MHC-restricted B cell help was associated with a TH2 lymphokine profile. TH1-derived cytokines alone could not substitute for apoptosis-inducing T cells.
X He, W Zhong, J J Goronzy, C M Weyand
Increased binding of the lectin peanut agglutinin is a common feature in epithelial malignancy and hyperplasia. This may have considerable functional importance in the intestine by allowing interaction between the epithelium and mitogenic lectins of dietary or microbial origin. Peanut agglutinin binds the disaccharide Thomsen-Friedenreich (TF, T or core 1) blood group antigen, Gal beta (1-3) GalNAc alpha-, but is not totally specific for this site. Consequently, there has been controversy about the presence of this structure in colon cancer; studies with anti-TF monoclonal antibodies have failed to detect it. We have examined the presence of TF antigen in colonic mucus glycoprotein (mucin) using endo-alpha-N-acetylgalactosaminidase (O-Glycanase), which specifically catalyzes the hydrolysis of TF antigen from glycoconjugates. Samples of adenocarcinoma, inflammatory bowel disease (ulcerative colitis), and normal mucin were treated with O-glycanase, the liberated disaccharide was separated from the glycoprotein and analyzed using dual CarboPac PA-100 column high performance anion-exchange chromatography coupled with pulsed amperometric detection. O-Glycanase treatment released increased amounts of TF antigen from both colonic adenocarcinoma (8.0 +/- 3.9 ng/micrograms protein, n = 11; P < 0.0001 ANOVA) and ulcerative colitis mucin (3.3 +/- 0.3 ng/micrograms protein, n = 5; P = 0.04) compared with mucin samples from histologically normal mucosa distant from carcinoma (1.5 +/- 1.1 ng/micrograms protein, n = 9). However, after mild acid treatment to remove sialic acids and fucose, releasable TF antigen was increased in all nine of these histologically normal mucin samples (5.5 +/- 2.6 ng/micrograms protein, P < 0.0002). We conclude that TF antigen is an oncofetal antigen which is expressed in colon cancer, but is concealed by further glycosylation (sialylation and/or fucosylation) in the normal colonic mucosa.
B J Campbell, I A Finnie, E F Hounsell, J M Rhodes
Allergic symptoms result from the release of granular and lipidic mediators and of cytokines by inflammatory cells. The whole process is initiated by the aggregation of mast cell and basophil high-affinity IgE receptors (Fc epsilon RI) by IgE and antigen. We report here that IgE-induced release of mediator and cytokine can be inhibited by cross-linking Fc epsilon RI to low-affinity IgG receptors (Fc gamma RII) which are constitutively expressed on mast cells and basophils. Using a model of stable transfectants in RBL-2H3 cells expressing endogeneous rat Fc epsilon RI and recombinant murine Fc gamma RII, we showed that inhibition requires that Fc epsilon RI be crosslinked to Fc gamma RII by the same multivalent ligand. Inhibition of cross-linked receptors left non-cross-linked Fc epsilon RI capable of triggering mediator release and was reversible upon disengagement. Both isoforms of wild-type Fc gamma RII were equally capable of inhibiting Fc epsilon RI-mediated mast cell activation provided they had an intact intracytoplasmic domain. Our results demonstrate that mast cell secretory responses triggered by high-affinity receptors for IgE may be controlled by low-affinity receptors for IgG. This regulation of Fc epsilon RI-mediated mast cell activation is of potential interest in mast cell physiology and in allergic pathology.
M Daëron, O Malbec, S Latour, M Arock, W H Fridman
Mycobacterium tuberculosis infection is accompanied by acute and chronic inflammatory infiltrates associated with necrotizing granulomas in lung tissue. The cellular infiltrate is characterized by inflammatory cells which include neutrophils, lymphocytes, and macrophages. In animal and in vitro models of mycobacterial infection, cytokines including tumor necrosis factor-alpha (TNF-alpha), interferon gamma (IFN-gamma), and interleukin-1 beta (IL-1 beta) participate in granulomatous inflammation. We hypothesized that interleukin-3, a potent chemoattractant for neutrophils and lymphocytes, could be released by activated alveolar macrophages after exposure to M. tuberculosis or its components and contribute to granulomatous lung inflammation. A quantitative immunoassay revealed that IL-8 protein release was significantly elevated in supernatants of macrophages and in lavage fluid obtained from patients with pulmonary tuberculosis compared to normal controls. In addition, Northern blots demonstrated striking up-regulation of IL-8 mRNA in macrophages from these patients. M. tuberculosis and its cell wall components lipoarabinomannan (LAM), lipomannan (LM), and phosphoinositolmannoside (PIM) stimulated IL-8 protein release and mRNA expression in vitro from alveolar macrophages, but deacylated LAM did not. Neutralizing antibodies to TNF-alpha and/or IL-1-alpha and beta blocked 83% of the stimulation. IL-8 synthesis and release is an early response of macrophages after phagocytosis of M. tuberculosis. Its production serves to attract both acute and chronic inflammatory cells of active infection and thus participates in the process of containment of the pathogen.
Y Zhang, M Broser, H Cohen, M Bodkin, K Law, J Reibman, W N Rom
The aim of this study was to determine whether a selective increase in the level of insulin in the blood perfusing the brain is a determinant of the counterregulatory response to hypoglycemia. Experiments were carried out on 15 conscious 18-h-fasted dogs. Insulin was infused (2 mU/kg per min) in separate, randomized studies into a peripheral vein (n = 7) or both carotid and vertebral arteries (n = 8). This resulted in equivalent systemic insulinemia (84 +/- 6 vs. 86 +/- 6 microU/ml) but differing insulin levels in the head (84 +/- 6 vs. 195 +/- 5 microU/ml, respectively). Glucose was infused during peripheral insulin infusion to maintain the glucose level (56 +/- 2 mg/dl) at a value similar to that seen during head insulin infusion (58 +/- 2 mg/dl). Despite equivalent peripheral insulin levels and similar hypoglycemia; steady state plasma epinephrine (792 +/- 198 vs. 2394 +/- 312 pg/ml), norepinephrine (404 +/- 33 vs. 778 +/- 93 pg/ml), cortisol (6.8 +/- 1.8 vs. 9.8 +/- 1.6 micrograms/dl) and pancreatic polypeptide (722 +/- 273 vs. 1061 +/- 255 pg/ml) levels were all increased to a greater extent during head insulin infusion (P < 0.05). Hepatic glucose production, measured with [3-3H]glucose, rose from 2.6 +/- 0.2 to 4.3 +/- 0.4 mg/kg per min (P < 0.01) in response to head insulin infusion but remained unchanged (2.6 +/- 0.5 mg/kg per min) during peripheral insulin infusion. Similarly, gluconeogenesis, lipolysis, and ketogenesis were increased twofold (P < 0.001) during head compared with peripheral insulin infusion. Cardiovascular parameters were also significantly higher (P < 0.05) during head compared with peripheral insulin infusion. We conclude that during hypoglycemia in the conscious dog (a) the brain is directly responsive to physiologic elevations of insulin and (b) the response includes a profound stimulation of the autonomic nervous system with accompanying metabolic and cardiovascular changes.
S N Davis, C Colburn, R Dobbins, S Nadeau, D Neal, P Williams, A D Cherrington
We purified a molecule from the murine small intestine that killed both Escherichia coli and Listeria monocytogenes, and identified it as intestinal phospholipase A2 (iPLA2) by NH2-terminal sequencing and enzymatic measurements. The ability of iPLA2 to kill. L. monocytogenes was greatly enhanced by 5 mM calcium, inhibited by EGTA and abolished after reduction and alkylation, suggesting that enzymatic activity was required for iPLA2-mediated bactericidal activity. A mouse-avirulent phoP mutant, S. typhimurium 7953S, was 3.5-fold more susceptible to iPLA2 than its isogenic virulent parent, S. typhimurium 14028S (estimated minimal bactericidal concentrations 12.7 +/- 0.5 micrograms/ml vs. 43.9 +/- 4.5 micrograms/ml P < 0.001). Overall, these findings identify iPLA2 as part of the antimicrobial arsenal that equips Paneth cells to protect the small intestinal crypts from microbial invasion. Because iPLA2 is identical to Type 2 phospholipase A2 molecules found in other sites, including spleen, platelets and inflammatory exudate cells, this enzyme may also contribute to antibacterial defenses elsewhere in the body.
S S Harwig, L Tan, X D Qu, Y Cho, P B Eisenhauer, R I Lehrer
The individual effects of dietary cholesterol and fat saturation on plasma lipoprotein concentrations were determined in an ethnically diverse population of normolipidemic young men (52 Caucasian, 32 non-Caucasian). The experimental diets contained approximately 200 or 600 mg/d of cholesterol, 36-38% of calories as fat, and high or low proportions of saturated and polyunsaturated fat (polyunsaturated/saturated fat ratio approximately 0.8 vs 0.3). At the lower cholesterol intake, the high saturated fat diet had only a modest effect on LDL cholesterol in Caucasians (+ 6 mg/dl-1) and none in non-Caucasians. 600 mg cholesterol with high saturated fat led to a substantial mean increase in LDL cholesterol, which was significantly greater in Caucasian than in non-Caucasian subjects (+ 31 mg/dl vs 16 mg/dl, P < 0.005). 600 mg cholesterol with increased polyunsaturated fat gave a mean LDL increase of 16 mg/dl, lower than found when the same high cholesterol intake was coupled with increased saturated fat. Variation in cholesterol rather than the proportions of saturated and polyunsaturated fat had the most influence on LDL-cholesterol levels. Among non-Caucasians it was the only significant factor.
C J Fielding, R J Havel, K M Todd, K E Yeo, M C Schloetter, V Weinberg, P H Frost
To determine whether additional hypertrophy would be beneficial or maladaptive in cardiac failure, the effects of insulin-like growth factor (IGF-1) were investigated in rats with left ventricular (LV) dysfunction. In normal rats, 3 mg/kg per d of recombinant human IGF-1 for 14 d augmented LV wt (32%) and increased LV/body wt ratio (P < 0.01). 2 d after coronary occlusion, rats were randomized to IGF-1 (3 mg/kg per d) or placebo. After 2 wk, IGF-1-treated rats showed significant increases in LV wt (13%) and LV wt/tibial length ratio, but LV/body wt ratio was unchanged. By microangiography, compared with controls (n = 12) IGF-1-treated rats (n = 16) showed increased LV end-diastolic volume (19%) and stroke volume (31%) (both significant normalized to tibial length, but not to body wt). Average infarct size did not differ between groups. The LV ejection fraction (EF) was not significantly different between groups, but estimated cardiac output was higher in treated rats; there was a significant interaction for the EF between infarct size and treatment (P = 0.029) and a trend for EF to be higher in treated rats with large infarctions (EF 33.4 vs 25.1% in controls). Myocyte cross-sectional areas in noninfarcted LV zones tended to be larger in treated rats (232.1 vs 205.4 microns 2; P = 0.10), but there was no difference in capillary density and collagen content did not differ between groups. In conclusion, IGF-1 administration caused hypertrophy of the normal heart in vivo. When stimulated by IGF-1, the severely dysfunctional heart in evolving myocardial infarction is capable of undergoing additional hypertrophy with evidence of improved function, suggesting a beneficial effect. Further investigation of the potential role of growth factor therapy in heart failure appears warranted.
R L Duerr, S Huang, H R Miraliakbar, R Clark, K R Chien, J Ross Jr
We reported previously that daily injections of isophane insulin prevented both hyperglycemia and insulitis in nonobese diabetic (NOD) mice (Atkinson, M., N. Maclaren; and R. Luchetta. 1990. Diabetes. 39:933-937). The possible mechanisms responsible include reduced immunogenicity of pancreatic beta-cells from "beta-cell rest" and induced active immunoregulation to insulin (Aaen, IK., J. Rygaard, K. Josefsen, H. Petersen, C. H. Brogren, T. Horn, and K. Buschard. 1990. Diabetes. 39:697-701). We report here that intermittent immunizations with insulin or its metabolically inactive B-chain in incomplete Freund's adjuvant also prevent diabetes in NOD mice, whereas immunizations with A-chain insulin or with BSA do not. Adoptive transfer of splenocytes from B-chain insulin-immunized mice prevented diabetes in recipients co-infused with diabetogenic spleen cells, an effect that was abolished by prior in vivo elimination of either CD4+ or CD8+ cells. Insulin immunization did not reduce the extent of intraislet inflammation (insulitis); however, it did abolish expression of IFN-gamma mRNA within the insulitis lesions. Immunizations with insulin thus induce an active suppressive response to determinants on the B-chain that converts the insulitis lesion from one that is destructive to one that is protective.
A Muir, A Peck, M Clare-Salzler, Y H Song, J Cornelius, R Luchetta, J Krischer, N Maclaren
Sialoadhesin is a macrophage-restricted, sialic acid-dependent receptor of 185 kD that binds to the oligosaccharide sequence NeuAc alpha 2,3Gal on cell surface glycoconjugates. Recent cDNA cloning has shown that sialoadhesin is a new member of the immunoglobulin superfamily with sequence similarity to CD22, a sialic acid-dependent receptor of B lymphocytes. Sialoadhesin has been implicated in cellular interactions of stromal macrophages with developing myeloid cells. In this study, direct evidence for this interaction was obtained in cell-cell binding assays using both native and recombinant forms of the protein. In all assays, sialoadhesin exhibited specific, differential binding to various murine cell populations of hemopoietic origin. In rank order, sialoadhesin bound neutrophils > bone marrow cells = blood leukocytes > lymphocytes > thymocytes. Single-cell analyses confirmed that sialoadhesin selectively bound myeloid cells in complex cell mixtures obtained from the bone marrow and blood. In comparison, a recombinant Fc-chimeric form of murine CD22 showed high binding to B and T lymphocytes, but very low binding to immature and mature myeloid cells. These results are consistent with the notion that sialoadhesin in involved in interactions with granulocytes at different stages of their life histories.
P R Crocker, S Freeman, S Gordon, S Kelm
It is well established that the terminal renal collecting duct is capable of electrogenic Na+ absorption. The present experiments examined other active ion transport processes in primary cultures of the rat inner medullary collecting duct. When the amiloride analogue benzamil inhibited electrogenic Na+ absorption, cAMP agonists stimulated a transmonolayer short circuit current that was not dependent on the presence of Na+ in the apical solution, but was dependent on the presence of Cl- and HCO3-. This current was not inhibited by the loop diuretic bumetanide, but was inhibited by ouabain, an inhibitor of the Na+/K+ pump. The current was reduced by anion transport inhibitors, with a profile similar to that seen for inhibitors of the cystic fibrosis transmembrane conductance regulator (CFATR) Cl- channel. Using several PCR strategies, we demonstrated fragments of the predicted lengths and sequence identity with the rat CFTR. Using whole-cell patch-clamp analysis, we demonstrated a cAMP-stimulated Cl- current with characteristics of the CFTR. We conclude that the rat inner medullary collecting duct has the capacity to secrete anions. It is highly likely that the CFTR Cl- channel is involved in this process.
R F Husted, K A Volk, R D Sigmund, J B Stokes
Angiotensin II (ANG II) is known to be a potent growth promoting factor for vascular smooth muscle cells and fibroblasts but little is known about its influence on growth in endothelial cells. We studied the effects of ANG II on endothelial growth and the role of the angiotensin receptor subtypes involved. Proliferation of rat coronary endothelial cells (CEC) and rat vascular smooth muscle cells (VSMC) was determined by [3H]thymidine incorporation, the MTT-test and by directly counting cells in a coulter counter. Angiotensin AT1- and AT2-receptors were demonstrated by binding studies and by the presence of their respective mRNA through reverse transcription polymerase chain reaction (RT-PCR). In contrast to VSMC, which in culture only express the AT1-receptor, CEC express both, AT1- and AT2-receptors simultaneously up to the third passage. Whereas ANG II stimulated growth of quiescent VSMC, an effect abolished by pretreatment with the AT1-receptor antagonist, losartan, ANG II did not induce proliferation in quiescent CEC. However, after pretreatment of quiescent endothelial cells (< passage 4) with the AT2-receptor antagonist, PD 123177, ANG II induced proliferation. This effect was reversed by additional pretreatment with losartan. ANG II significantly inhibited the proliferation of bFGF-stimulated CEC in a dose-dependent manner by maximally 50%. This effect was prevented by PD 123177 while losartan was ineffective. The AT2-receptor agonist, CGP 42112, mimicked the antiproliferative actions of ANG II, confirming the specificity of the effect. Our results show that the growth modulating actions of ANG II depend on the type of angiotensin receptor present on a given cell. In coronary endothelial cells, the antiproliferative actions of the AT2-receptor offset the growth promoting effects mediated by the AT1-receptor.
M Stoll, U M Steckelings, M Paul, S P Bottari, R Metzger, T Unger
In 12 healthy male volunteers (27-53 yr), a placebo-controlled randomized double blind cross-over trial was performed to study the effect of the intravenous injection of 0.25, 0.5, 1, 2, 4, and 6 mg draflazine (a selective nucleoside transport inhibitor) on hemodynamic and neurohumoral parameters and ex vivo nucleoside transport inhibition. We hypothesized that an intravenous draflazine dosage without effect on hemodynamic and neurohumoral parameters would still be able to augment the forearm vasodilator response to intraarterially infused adenosine. Heart rate (electrocardiography), systolic blood pressure (Dinamap 1846 SX; Critikon, Portanje Electronica BV, Utrecht, The Netherlands) plasma norepinephrine and epinephrine increased dose-dependently and could almost totally be abolished by caffeine pretreatment indicating the involvement of adenosine receptors. Draflazine did not affect forearm blood flow (venous occlusion plethysmography). Intravenous injection of 0.5 mg draflazine did not affect any of the measured hemodynamic parameters but still induced a significant ex vivo nucleoside-transport inhibition of 31.5 +/- 4.1% (P < 0.05 vs placebo). In a subgroup of 10 subjects the brachial artery was cannulated to infuse adenosine (0.15, 0.5, 1.5, 5, 15, and 50 micrograms/100 ml forearm per min) before and after intravenous injection of 0.5 mg draflazine. Forearm blood flow amounted 1.9 +/- 0.3 ml/100 ml forearm per min for placebo and 1.8 +/- 0.2, 2.0 +/- 0.3, 3.8 +/- 0.9, 6.3 +/- 1.2, 11.3 +/- 2.2, and 19.3 +/- 3.9 ml/100 ml forearm per min for the six incremental adenosine dosages, respectively. After the intravenous draflazine infusion, these values were 1.6 +/- 0.2 ml/100 ml forearm per min for placebo and 2.1 +/- 0.3, 3.3 +/- 0.6, 5.8 +/- 1.1, 6.9 +/- 1.4, 14.4 +/- 2.9, and 23.5 +/- 4.0 ml/100 ml forearm per min, respectively (Friedman ANOVA: P < 0.05 before vs after draflazine infusion). In conclusion, a 30-50% inhibition of adenosine transport significantly augments the forearm vasodilator response to adenosine without significant systemic effects. These results suggest that draflazine is a feasible tool to potentiate adenosine-mediated cardioprotection in man.
G A Rongen, P Smits, K Ver Donck, J J Willemsen, R A De Abreu, H Van Belle, T Thien
To define the pathophysiological role of nitric oxide (NO) released from vascular smooth muscle cells (VSMC), we examined whether NO released from VSMC induces cytotoxicity in VSMC themselves and adjacent endothelial cells (EC) using a coculture system. Prolonged incubation with interleukin-1 (IL-1) induced large amounts of NO release and cytotoxicity in VSMC. NG-Monomethyl-L-arginine, an inhibitor of NO synthesis, inhibited both NO release and cytotoxicity induced by IL-1. In contrast, DNA synthesis in cocultured EC was not inhibited but rather stimulated by prolonged incubation with IL-1 or sodium nitroprusside (SNP), a NO donor. However, IL-1 and SNP did not stimulate but inhibited DNA synthesis in EC alone. On the other hand, conditioned medium from VSMC incubated for a long period with IL-1 or SNP stimulated DNA synthesis in EC alone. Furthermore, the concentration of basic fibroblast growth factor in the conditioned medium was increased and correlated with the degree of cytotoxicity in VSMC. These results indicate that NO released from VSMC induces VSMC death, which results in release of basic fibroblast growth factor, which then stimulates adjacent EC proliferation. Thus, NO released from VSMC may participate in the mechanism of neovascularization in atherosclerotic plaques.
K Fukuo, T Inoue, S Morimoto, T Nakahashi, O Yasuda, S Kitano, R Sasada, T Ogihara
Inducible nitric oxide (NO) produced by macrophages is cytotoxic to invading organisms and has an important role in host defense. Recent studies have demonstrated inducible NO production within the heart, and that cytokine-induced NO mediates alterations in cardiac contractility, but the cytotoxic potential of nitric oxide with respect to the heart has not been defined. To evaluate the role of inducible nitric oxide synthase (iNOS) on cardiac myocyte cytotoxicity, we exposed adult rat cardiac myocytes to either cytokines alone or to activated J774 macrophages in coculture. Increased expression of both iNOS message and protein was seen in J774 macrophages treated with IFN gamma and LPS and cardiac myocytes treated with TNF-alpha, IL-1 beta, and IFN gamma. Increased NO synthesis was confirmed in both the coculture and isolated myocyte preparations by increased nitrite production. Increased NO synthesis was associated with a parallel increase in myocyte death as measured by CPK release into the culture medium as well as by loss of membrane integrity, visualized by trypan blue staining. Addition of the competitive NO synthase inhibitor L-NMMA to the culture medium prevented both the increased nitrite production and the cytotoxicity observed after cytokine treatment in both the isolated myocyte and the coculture experiments. Because transforming growth-factor beta modulates iNOS expression in other cell types, we evaluated its effects on cardiac myocyte iNOS expression and NO-mediated myocyte cytotoxicity. TGF-beta reduced expression of cardiac myocyte iNOS message and protein, reduced nitrite production, and reduced NO-mediated cytotoxicity in parallel. Taken together, these experiments show the cytotoxic potential of endogenous NO production within the heart, and suggest a role for TGF-beta or NO synthase antagonists to mute these lethal effects. These findings may help explain the cardiac response to sepsis or allograft rejection, as well as the progression of dilated cardiomyopathies of diverse etiologies.
D J Pinsky, B Cai, X Yang, C Rodriguez, R R Sciacca, P J Cannon
Since mutagens produce an extraordinary diversity of mutational patterns, differential mutational exposures among populations are expected to produce different patterns of mutation. Classical epidemiological methods have been successful in implicating specific mutagens in cancers such as those of lung and skin in which one mutagen predominates. In breast cancer, however, no mutagens have been implicated in an unequivocal manner. In an attempt to facilitate epidemiological studies, we have been studying the pattern of p53 gene mutations in breast cancers from multiple populations with high and low breast cancer incidences. We previously reported that breast cancers from Midwest United States, predominantly rural Caucasian women, have a different pattern of p53 gene mutation from populations of Western European women. Herein, we analyze patterns of p53 mutations from Graz, Austria, another population with a high incidence of breast cancer. Among the 60 Austrian breast cancers analyzed, 14 (23%) have a p53 gene mutation in exons 5-9 or in adjacent splice junctions. Analysis of the patterns of mutation shows differences between the "Western European" profile and the Austrian and Midwest United States groups (P = 0.027 and 0.024, respectively). The Austrian pattern is characterized by a high frequency of A:T-->T:A transversions (P = 0.006). The presence of distinct patterns of mutation among the limited number of analyzed populations of Western European origin supports the idea that differential mutagenic exposure and/or genetic differences contribute to breast cancer mutagenesis among geographically distinct Caucasians of Western European origin.
A Hartmann, G Rosanelli, H Blaszyk, J M Cunningham, R M McGovern, J J Schroeder, D J Schaid, J S Kovach, S S Sommer
12 identical twin pairs discordant for non-insulin-dependent diabetes mellitus (NIDDM) were studied for insulin sensitivity (euglycemic insulin clamp, 40 mU/m2 per min), hepatic glucose production (HGP, [3-3H]glucose infusion), and insulin secretion (oral glucose tolerance test and hyperglycemic [12 mM] clamp, including glucagon administration). Five of the nondiabetic twins had normal and seven had impaired glucose tolerance. 13 matched, healthy subjects without a family history of diabetes were included as control subjects. The NIDDM twins were more obese compared with their non-diabetic co-twins. The nondiabetic twins were insulin resistant and had a delayed insulin and C-peptide response during oral glucose tolerance tests compared with controls. Furthermore, the nondiabetic twins had a decreased first-phase insulin response and a decreased maximal insulin secretion capacity during hyperglycemic clamping and intravenous glucagon administration. Nondiabetic twins and controls had similar rates of HGP. Compared with both nondiabetic twins and controls, the NIDDM twins had an elevated basal rate of HGP, a further decreased insulin sensitivity, and a further impaired insulin secretion pattern as determined by all tests. In conclusion, defects of both in vivo insulin secretion and insulin action are present in non- and possibly prediabetic twins who possess the necessary NIDDM susceptibility genes. However, all defects of both insulin secretion and glucose metabolism are expressed quantitatively more severely in their identical co-twins with overt NIDDM.
A Vaag, J E Henriksen, S Madsbad, N Holm, H Beck-Nielsen
Previous studies have shown increased nucleotide pyrophosphohydrolase (EC 3.6.1.8) (NTPPHase) activity in detergent extracts of degenerated human cartilage containing calcium pyrophosphate dihydrate (CPPD) crystals relative to those from osteoarthritis or normal cartilage. NTPPHase was later shown to be an ectoenzyme and its activity was increased in synovial fluid from patients with CPPD crystal deposits relative to fluids from other types of arthritis. We have purified a soluble 61-kD NTPPHase from conditioned media of organ-cultured porcine articular cartilage to electrophoretic homogeneity. Its NH2-terminal sequence through 26 cycles showed < 30% homology to any previously reported protein sequence. An antibody raised to a synthetic peptide corresponding to this sequence reacted with denatured but not native enzyme. This antibody reacted against a sedimentable vesicle-associated 127-kD protein in conditioned media from cultured articular cartilage or from chondrocytes in primary monolayer culture and against a series of soluble proteins in conditioned media supernatant, including a 61-kD protein representing our original isolate. No reactivity was found in 1% SDS extracts of washed cultured chondrocytes, although these contained greater NTPPHase activity than the conditioned media. Antibody to PC-1, another ectoNTPPHase, reacted with 1% SDS extracts of whole chondrocytes but not against those chromatographic fractions containing the major portion of NTPPHase activity. Release of the vesicle-associated 127-kD enzyme into conditioned medium was stimulated three- to sevenfold by TGF beta 1. The antibody also reacted with a series of soluble proteins and with 127-kD sedimentable protein in human synovial fluid. Kinetic studies supported the existence of a unique vesicle-associated NTPPHase; apparent Km (mM) of chondrocyte membrane NTPPHase was 1.5 and 3.0 at pH 7.3 and 9.88, respectively; apparent Km (mM) of vesicle associated NTPPHase was 0.83 and 1.28 at pH 7.3 and 9.88. The data suggest the existence of a unique ecto-NTPPHase associated with vesicles derived from normal articular cartilage.
I Masuda, J Hamada, A L Haas, L M Ryan, D J McCarty
Epidemiological and transgenic animal studies have implicated apo C-III as a major determinant of plasma triglyceride metabolism. Since fibrates are very efficient in lowering triglycerides, it was investigated whether fibrates regulate apo C-III gene expression. Different fibrates lowered rat liver apo C-III mRNA levels up to 90% in a dose- and time-dependent manner, whereas intestinal apo C-III mRNA remained constant. This decrease in liver apo C-III mRNA was rapid (1 d) and reversible, since it was restored to control levels within 1 wk after cessation of treatment. In addition, fenofibrate treatment abolished the developmental rise of hepatic apo C-III mRNA observed during the suckling-weaning period. Administration of fibrates to rats induced liver and intestinal expression of the acyl CoA oxidase gene, the rate-limiting enzyme for peroxisomal beta-oxidation of fatty acids. In primary cultures of rat and human hepatocytes, fenofibric acid lowered apo C-III mRNA in a time- and dose-dependent manner. This reduction in apo C-III mRNA levels was accompanied by a decreased secretion of apo C-III in the culture medium of human hepatocytes. In rat hepatocytes fenofibric acid induced acyl CoA oxidase gene expression, whereas acyl CoA oxidase mRNA remained unchanged in human hepatocytes. Nuclear run-on and transient transfection experiments of a reporter construct driven by the human apo C-III gene promoter indicated that fibrates downregulate apo C-III gene expression at the transcriptional level. In conclusion, these studies demonstrate that fibrates decrease rat and human liver apo C-III gene expression. In humans the mechanisms appears to be independent of the induction of peroxisomal enzymes. This downregulation of liver apo C-III gene expression by fibrates may contribute to the hypotriglyceridemic action of these drugs.
B Staels, N Vu-Dac, V A Kosykh, R Saladin, J C Fruchart, J Dallongeville, J Auwerx
Osteopontin is an arginine-glycine-aspartate containing acidic glycoprotein postulated to mediate adhesion, migration, and biomineralization in diverse tissues. The mechanisms explaining this multifunctionality are not well understood, although it is known that one osteopontin receptor is the alpha v beta 3 integrin. In this work, we studied human smooth muscle cells varying in alpha v beta 3 levels to identify additional osteopontin receptors. We report that, in addition to alpha v beta 3, both alpha v beta 5 and alpha v beta 1 are osteopontin receptors. Moreover, the presence or absence of alpha v beta 3 on the cell surface altered the adhesive and migratory responses of smooth muscle cells to osteopontin. Adhesion of alpha v beta 3-deficient cell populations to osteopontin was only half that of cells containing alpha v beta 3, and migration toward an osteopontin gradient in the Boyden chamber was dependent on cell surface alpha v beta 3. Although alpha v beta 3-deficient smooth muscle cells were unable to migrate to osteopontin, they did migrate significantly in response to vitronectin and fibronectin. These findings represent the first description of alpha v beta 5 and alpha v beta 1 as osteopontin receptors and suggest that, while adhesion to osteopontin is supported by integrins containing beta 1, beta 3, and beta 5, migration in response to osteopontin appears to depend on alpha v beta 3. Thus, interaction with distinct receptors is one mechanism by which osteopontin may initiate multiple functions.
L Liaw, M P Skinner, E W Raines, R Ross, D A Cheresh, S M Schwartz, C M Giachelli
Maternal infection is a cause of spontaneous abortion and preterm labor in humans, but the pathophysiology is unclear. We hypothesized that eicosanoids play an important role in infection-driven pregnancy loss. To investigate this hypothesis, we administered lipopolysaccharide (LPS) to pregnant C3H/HeN mice and found that LPS administration caused fetal death in a dose-dependent fashion. Pretreatment with indomethacin significantly decreased the proportion of fetal death from 83% to < 25% in mice injected with 10 micrograms of LPS. Also, decidual explants from LPS-treated mice produced significantly more inflammatory eicosanoids, including prostaglandins E2 and F2 alpha and thromboxane B2, than controls. We investigated the regulatory mechanisms responsible for increased decidual prostanoid production in response to LPS. Western and Northern blots demonstrated that decidual protein and mRNA levels of a recently recognized highly inducible form of cyclooxygenase, COX-2, were substantially increased in mice treated with LPS. Induction of COX-2 was rapid: mRNA was detected 30 min after LPS injection. In contrast, another form of cyclooxygenase, COX-1, was only minimally induced in response to LPS. Our data indicate that LPS induces decidual prostanoid production via increased COX-2 expression. Since LPS-mediated fetal death is markedly diminished by pretreatment with indomethacin, COX-2-mediated eicosanoid production is likely a key pathophysiologic event in LPS-mediated fetal death.
R M Silver, S S Edwin, M S Trautman, D L Simmons, D W Branch, D J Dudley, M D Mitchell
Almost all childhood HIV-1 is now acquired through vertical transmission. Identifying factors that affect the rate of transmission may lead to the initiation of specific preventive strategies. In this study, antibody levels against different neutralizing epitopes on the envelope glycoprotein of HIV-1 (gp120) were measured in HIV-1-infected pregnant women that either transmitted HIV-1 to their infants (18 women) or did not (29 women). Differences in levels of antibodies directed against the monomeric gp120 molecule and against the V3 loop region of gp120 were not significantly different between the two groups studied. However, significant differences were observed in the levels of CD4 binding site antibodies, as determined by the ability of diluted maternal plasma to inhibit binding of the CD4 binding site monoclonal antibody F105 (mAb F105) to monomeric gp120. In addition, more nontransmitting mothers had low viral load as defined by having two or more negative HIV-1 viral cultures during pregnancy compared with transmitters. This pilot study suggests that in addition to higher viral load, low levels of CD4 binding site antibodies correlate with increased risk of HIV-1 vertical transmission. Passive immunotherapy with broadly neutralizing CD4 binding site antibodies should be considered as a strategy to reduce this risk.
Y F Khouri, K McIntosh, L Cavacini, M Posner, M Pagano, R Tuomala, W A Marasco
The ability of cells to tolerate hypoxia is critical to their survival, but varies greatly among different cell types. Despite alterations in many cellular responses during hypoxic exposure, pulmonary arterial endothelial cells (PAEC) retain their viability and cellular integrity. Under similar experimental conditions, other cell types, exemplified by renal tubular epithelial cells, are extremely hypoxia sensitive and are rapidly and irreversibly damaged. To investigate potential mechanisms by which PAEC maintain cellular and functional integrity under these conditions, we compared the turnover of adenine and guanine nucleotides in hypoxia tolerant PAEC and in hypoxia-sensitive renal tubular endothelial cells under various hypoxic conditions. Under several different hypoxic conditions, hypoxia-tolerant PAEC maintained or actually increased ATP levels and the percentage of these nucleotides found in the high energy phosphates, ATP and GTP. In contrast, in hypoxia-sensitive renal tubular endothelial cells, the same high energy phosphates were rapidly depleted. Yet, in both cell types, there were minor alterations in the uptake of the precusor nucleotide and its incorporation into the appropriate purine nucleotide phosphates and marked decreases in ATPase and GTPase activity. This maintenance of high energy phosphates in hypoxic PAEC suggests that there exists tight regulation of ATP and GTP turnover in these cells and that preservation of these nucleotides may contribute to the tolerance of PAEC to acute and chronic hypoxia.
A V Tretyakov, H W Farber
Sodium-dependent bile acid transport in the rat ileum is abruptly expressed at weaning. Degenerate oligonucleotides, based on amino acid sequence identities between the rat liver and hamster ileal transporters, were used to amplify a rat ileal probe. A 1.2-kb cDNA clone, which contains the full coding region (348 amino acids, 38 kD), was isolated by hybridization screening. In vitro translation yielded a 38-kD protein which glycosylated to 48 kD. Sodium-dependent uptake of taurocholate was observed in oocytes injected with cRNA. Northern blot analysis revealed a 5.0-kb mRNA in ileum, kidney, and cecum. A 48-kD protein was detected in ileal brush border membranes and localized to the apical border of villus ileal enterocytes. mRNA and protein expression, which were negligible before weaning, increased dramatically at weaning. Nuclear transcription rates for the transporter increased 15-fold between postnatal days 7 and 28. The apparent molecular weight of the transporter also increased between days 19 and 28. In summary, the developmental regulation of the rat ileal sodium-dependent bile acid cotransporter is characterized by transcriptionally regulated increases in mRNA and protein levels at the time of weaning with changes in apparent molecular weight of the protein after weaning.
B L Shneider, P A Dawson, D M Christie, W Hardikar, M H Wong, F J Suchy
The mechanism(s) of insulin resistance in non-insulin-dependent diabetes mellitus remains ill defined. The current studies sought to determine whether non-insulin-dependent diabetes mellitus is associated with (a) a delay in the rate of onset of insulin action, (b) impaired hepatic and extrahepatic kinetic responses to insulin, and (c) an alteration in the contribution of gluconeogenesis to hepatic glucose release. To answer these questions, glucose disappearance, glucose release, and the rate of incorporation of 14CO2 into glucose were measured during 0.5 and 1.0 mU/kg-1 per min-1 insulin infusions while glucose was clamped at approximately 95 mg/dl in diabetic and nondiabetic subjects. The absolute rate of disappearance was lower (P < 0.05) and the rate of increase slower (P < 0.05) in diabetic than nondiabetic subjects during both insulin infusions. In contrast, the rate of suppression of glucose release in response to a change in insulin did not differ in the diabetic and nondiabetic subjects during either the low (slope 30-240 min:0.02 +/- 0.01 vs 0.02 +/- 0.01) or high (0.02 +/- 0.00 vs 0.02 +/- 0.00) insulin infusions. However, the hepatic response to insulin was not entirely normal in the diabetic subjects. Both glucose release and the proportion of systemic glucose being derived from 14CO2 (an index of gluconeogenesis) was inappropriately high for the prevailing insulin concentration in the diabetic subjects. Thus non-insulin-dependent diabetes mellitus slows the rate-limiting step in insulin action in muscle but not liver and alters the relative contribution of gluconeogenesis and glycogenolysis to hepatic glucose release.
D Turk, A Alzaid, S Dinneen, K S Nair, R Rizza
We have previously suggested that hyperglycemia per se may contribute to diabetic hypertensive and vascular disease by altering cellular ion content. To more directly investigate the potential role of glucose in this process, we measured cytosolic free calcium in primary cultures of vascular smooth muscle cells isolated from Sprague-Dawley rat tail artery before and after incubation with 5 (basal), 10, 15, and 20 mM glucose. Glucose significantly elevated cytosolic free calcium in a dose- and time-dependent manner, from 110.0 +/- 5.4 to 124.5 +/- 9.0, 192.7 +/- 20.4, and 228.4 +/- 21.9 nM at 5, 10, 15, and 20 mM glucose concentrations, respectively. This glucose-induced cytosolic free calcium elevation was also specific, no change being observed after incubation with equivalent concentrations of L-glucose or mannitol. This glucose effect was also dependent on extracellular calcium and pH, since these calcium changes were inhibited in an acidotic or a calcium-free medium, or by the competitive calcium antagonist lanthanum. We conclude that ambient glucose concentrations within clinically observed limits may alter cellular calcium ion homeostasis in vascular smooth muscle cells. We suggest that these cellular ionic effects of hyperglycemia may underlie the predisposition to hypertension and vascular diseases among diabetic subjects and/or those with impaired glucose tolerance.
M Barbagallo, J Shan, P K Pang, L M Resnick
Elevations of plasma total or LDL cholesterol are major risk factors for cardiovascular disease. Efforts directed at preventing and treating cardiovascular disease have often focused on reducing the levels of these substances in the blood. The Watanabe Heritable Hyperlipidemic Rabbit, which has exceedingly high plasma cholesterol levels resulting from an LDL receptor deficiency, provides an excellent animal model for testing new treatments. A recombinant adenoviral vector containing the rabbit LDL receptor cDNA was administered to Watanabe rabbits. Plasma total cholesterol levels in the treated animals were reduced from 825.5 +/- 69.8 (mean +/- SD) to 247.3 +/- 61.5 mg/dl 6 d after infusion. These animals also demonstrated a 300-400% increase in plasma levels of HDL cholesterol and apo AI 10 d after treatment. As a result, the LDL:HDL ratio exhibited a dramatic decrease. Because only the rabbit LDL receptor gene was used for treatment, the results strongly suggest that the elevations of plasma HDL cholesterol and apo AI were secondary to a reduction in plasma total cholesterol in the treated animals. These results suggest an inverse relationship between plasma LDL and HDL cholesterol levels and imply that reduction of LDL cholesterol levels may have a beneficial effect on plasma HDL cholesterol.
J Li, B Fang, R C Eisensmith, X H Li, I Nasonkin, Y C Lin-Lee, M P Mims, A Hughes, C D Montgomery, J D Roberts
Mildly oxidized low density lipoprotein (MM-LDL) produced by oxidative enzymes or cocultures of human artery wall cells induces endothelial cells to produce monocyte chemotactic protein-1 and to bind monocytes. HDL prevents the formation of MM-LDL by cocultures of artery wall cells. Using albumin treatment and HPLC we have isolated and partially characterized bioactive oxidized phospholipids in MM-LDL. Platelet activating factor-acetylhydrolase (PAF-AH), a serine esterase, hydrolyzes short chain acyl groups esterified to the sn-2 position of phospholipids such as PAF and particular oxidatively fragmented phospholipids. Treatment of MM-LDL with PAF-AH (2-4 x 10(-2) U/ml) eliminated the ability of MM-LDL to induce endothelial cells to bind monocytes. When HDL protected against the formation of MM-LDL by cocultures, lysophosphatidylcholine was detected in HDL; whereas when HDL was pretreated with diisopropyl fluorophosphate, HDL was no longer protective and lysophosphatidylcholine was undetectable. HPLC analysis also revealed that the active oxidized phospholipid species in MM-LDL had been destroyed after PAF-AH treatment. In addition, treatment of MM-LDL with albumin removed polar phospholipids that, when reisolated, induced monocyte binding to endothelial cells. These polar phospholipids, when treated with PAF-AH, lost biological activity and were no longer detected by HPLC. These results suggest that PAF-AH in HDL protects against the production and activity of MM-LDL by facilitating hydrolysis of active oxidized phospholipids to lysolipids, thereby destroying the biologically active lipids in MM-LDL.
A D Watson, M Navab, S Y Hama, A Sevanian, S M Prescott, D M Stafforini, T M McIntyre, B N Du, A M Fogelman, J A Berliner
Hepatic glycogen concentration was measured in six subjects with insulin-dependent diabetes mellitus (IDDM) and nine weight-matched control subjects using 13C nuclear magnetic resonance spectroscopy during a day in which three isocaloric mixed meals were ingested. The relative fluxes of the direct and indirect (3 carbon units-->-->glycogen) pathways of hepatic glycogen synthesis were also assessed using [1-13C]glucose in combination with acetaminophen to noninvasively sample the hepatic UDP-glucose pool. Mean fasting hepatic glycogen content was similar in the two groups. After each meal, hepatic glycogen content increased, peaking 4-5 h after the meal in both groups. By 11:00 p.m. the IDDM subjects had synthesized only 30% of the glycogen that was synthesized by the control group [IDDM subjects, net increment = 44 +/- 20 (mean +/- SE) mM; control subjects, net increment = 144 +/- 14 mM; P < 0.05]. After breakfast the flux through the gluconeogenic pathway relative to the direct pathway of hepatic glycogen synthesis was 1.7-fold greater in the IDDM subjects (59 +/- 4%) than in the control subjects (35 +/- 4%, P < 0.0003). In conclusion, under mixed meal conditions, subjects with poorly controlled IDDM have a major defect in net hepatic glycogen synthesis and augmented hepatic gluconeogenesis. The former abnormality may result in an impaired glycemic response to counterregulatory hormones, whereas both abnormalities may contribute to postprandial hyperglycemia.
J H Hwang, G Perseghin, D L Rothman, G W Cline, I Magnusson, K F Petersen, G I Shulman
J S Videen, T Michaelis, P Pinto, B D Ross
M Kirstein, M Rivet-Bastide, S Hatem, A Bénardeau, J J Mercadier, R Fischmeister
Compensatory hepatic regeneration after partial hepatectomy (PH) is dependent upon the extent of resection. This study analyzes the regulation of the AP-1 transcription factor c-Jun during hepatic regeneration. There is a progressive increase in c-jun mRNA levels after sham operation, one-third PH, and two-thirds PH. A concomitant increase in AP-1 binding activity is also observed. The c-Jun protein is a major constituent of the AP-1 complex in quiescent and early regenerating liver. The activity of c-Jun nuclear kinase (JNK), which phosphorylates the activation domain of the c-Jun protein, is markedly stimulated after one-third PH. JNK1 or an immunologically related kinase is a constituent of this stimulated JNK activity after PH. When primary cultures of adult rat hepatocytes are incubated with epidermal growth factor or transforming growth factor-alpha, AP-1 transcriptional activity is increased and the activation domain of the c-Jun protein is further potentiated. Phosphopeptide mapping of the endogenous c-Jun protein in proliferating cultured hepatocytes demonstrates phosphorylation of the c-Jun activation domain. Combining the results of these in vivo and culture studies, we conclude that the minimal stimulation of one-third PH activates JNK, which phosphorylates the c-Jun activation domain in hepatocytes, resulting in enhanced transcription of AP-1-dependent genes.
J K Westwick, C Weitzel, H L Leffert, D A Brenner
We have investigated the mechanisms of the anabolic effect of insulin on muscle protein metabolism in healthy volunteers, using stable isotopic tracers of amino acids. Calculations of muscle protein synthesis, breakdown, and amino acid transport were based on data obtained with the leg arteriovenous catheterization and muscle biopsy. Insulin was infused (0.15 mU/min per 100 ml leg) into the femoral artery to increase femoral venous insulin concentration (from 10 +/- 2 to 77 +/- 9 microU/ml) with minimal systemic perturbations. Tissue concentrations of free essential amino acids decreased (P < 0.05) after insulin. The fractional synthesis rate of muscle protein (precursor-product approach) increased (P < 0.01) after insulin from 0.0401 +/- 0.0072 to 0.0677 +/- 0.0101%/h. Consistent with this observation, rates of utilization for protein synthesis of intracellular phenylalanine and lysine (arteriovenous balance approach) also increased from 40 +/- 8 to 59 +/- 8 (P < 0.05) and from 219 +/- 21 to 298 +/- 37 (P < 0.08) nmol/min per 100 ml leg, respectively. Release from protein breakdown of phenylalanine, leucine, and lysine was not significantly modified by insulin. Local hyperinsulinemia increased (P < 0.05) the rates of inward transport of leucine, lysine, and alanine, from 164 +/- 22 to 200 +/- 25, from 126 +/- 11 to 221 +/- 30, and from 403 +/- 64 to 595 +/- 106 nmol/min per 100 ml leg, respectively. Transport of phenylalanine did not change significantly. We conclude that insulin promoted muscle anabolism, primarily by stimulating protein synthesis independently of any effect on transmembrane transport.
G Biolo, R Y Declan Fleming, R R Wolfe
Postischemic filtration failure in experimental animals results primarily from depression of the transcapillary hydraulic pressure difference (delta P), a quantity that cannot be determined in humans. To circumvent this limitation we determined the GFR and each of its remaining determinants in transplanted kidneys. Findings in 12 allografts that exhibited subsequent normofiltration (group 1) were compared with those in 11 allografts that exhibited persistent hypofiltration (group 2). Determinations were made intraoperatively in the exposed graft after 1-3 h of reperfusion. GFR (6 +/- 2 vs 29 +/- 5 ml/min) and renal plasma flow by Doppler flow meter (140 +/- 30 vs 315 +/- 49 ml/min) were significantly lower in group 2 than group 1. Morphometric analysis of glomeruli obtained by biopsy and a structural hydrodynamic model of viscous flow revealed the glomerular ultrafiltration coefficient to be similar, averaging 3.5 +/- 0.6 and 3.1 +/- 0.2 ml/(min.mmHg) in group 2 vs 1, respectively. Corresponding values for plasma oncotic pressure were also similar, averaging 19 +/- 1 vs 21 +/- 1 mmHg. We next used a mathematical model of glomerular ultrafiltration and a sensitivity analysis to calculate the prevailing range for delta P from the foregoing measured quantities. This revealed delta P to vary from only 20-21 mmHg in group 2 vs 34-45 mmHg in group 1 (P < 0.001). Further morphometric analysis revealed the diameters of Bowman's space and tubular lumens, as well as the percentage of tubular cells that were necrotic or devoid of brush border, to be similar in the two groups. We thus conclude (a) that delta P depression is the predominant cause of hypofiltration in this form of postischemic injury; and (b) that afferent vasoconstriction rather than tubular obstruction is the proximate cause of the delta P depression.
V Alejandro, J D Scandling Jr, R K Sibley, D Dafoe, E Alfrey, W Deen, B D Myers
The regenerating liver after partial hepatectomy is one of the few physiologic models of cellular proliferation in the adult animal. During hepatic regeneration, the animal is able to maintain metabolic homeostasis despite the acute loss of two thirds of hepatic tissue. In examining the molecular mechanisms regulating hepatic regeneration, we isolated novel immediate-early genes that are rapidly induced as the remnant liver undergoes the transition from its normal quiescent state into the G1 phase of the cell cycle. One of the most rapidly and highly induced genes which we initially termed RL-1, encodes rat glucose-6-phosphatase (rG6Pase). G6Pase mRNA peaks at 30 min and 36-48 h after hepatectomy correlating with the first and second rounds of cell division. This finding is compatible with studies that showed that G6Pase enzyme activity increases during liver regeneration. However, the increase in G6Pase mRNA is much more dramatic, indicating that it is a more sensitive indicator of this regulation. G6Pase gene expression peaks in the perinatal time period in the liver and remains elevated during the first month of life. The expression of the G6Pase gene is also dramatically elevated in BB diabetic rats, again higher than the enzyme elevation, and its relative induction after partial hepatectomy is blunted in these animals. Insulin treatment of partially hepatectomized diabetic animals downregulates the expression of G6Pase mRNA. Using specific antibodies against G6Pase, we detect a 36-kD G6Pase protein, and its level is elevated in regenerating and diabetic livers. The pattern of G6Pase mRNA expression appears to reflect similar changes in insulin and glucagon levels which accompany diabetes and hepatic proliferation. The elevation of G6Pase expression in these conditions is indicative of its importance as a regulator of glucose homeostasis in normal and abnormal physiologic states.
B A Haber, S Chin, E Chuang, W Buikhuisen, A Naji, R Taub
Neu differentiation factor (NDF) is a 44-kD glycoprotein which was isolated from ras-transformed rat fibroblasts and indirectly induces tyrosine phosphorylation of the HER-2/neu receptor via binding to either the HER-3 or HER-4 receptor. NDF contains a receptor binding epidermal growth factor (EGF)-like domain and is a member of the EGF family. There are multiple different isoforms of NDF which arise by alternative splicing of a single gene. To date, in vivo biologic activities have not been demonstrated for any NDF isoform. Since NDF, HER-2/neu, and HER-3 are present in skin, and other EGF family members can influence wound keratinocytes in vivo, we investigated whether NDF would stimulate epidermal migration and proliferation in a rabbit ear model of excisional wound repair. In this model, recombinant human NDF-alpha 2 (rhNDF-alpha 2), applied once at the time of wounding, induced a highly significant increase in both epidermal migration and epidermal thickness at doses ranging from 4 to 40 micrograms/cm2. In contrast, rhNDF-alpha 1, rhNDF-beta 1, and rhNDF-beta 2 had no apparent biologic effects in this model. rhNDF-alpha 2 also induced increased neoepidermal expression of alpha 5 and alpha 6 integrins, two of the earliest integrins to appear during epidermal migration. In addition, rhNDF-alpha 2-treated wounds exhibited increased neoepidermal expression of cytokeratin 10 and filaggrin, both epidermal differentiation markers. NDF alpha isoforms were expressed in dermal fibroblasts of wounded and unwounded skin, while both HER-2/neu and HER-3 were expressed in unwounded epidermis and dermal adnexa. In wounds, HER-2/neu expression was markedly decreased in the wound neoepidermis while neoepidermal HER-3 expression was markedly upregulated. Taken together, these results suggest that endogenous NDF-alpha 2 may function as a paracrine mediator directing initial epidermal migration during cutaneous tissue repair.
D M Danilenko, B D Ring, J Z Lu, J E Tarpley, D Chang, N Liu, D Wen, G F Pierce
The immunopathology of human T cell lymphotropic virus type 1 (HTLV-I) uveitis was addressed by using T cell clones (TCC) established from the intraocular fluid of patients with HTLV-I uveitis. Proviral DNA of HTLV-I was identified in 55 out of 94 (59%) or 13 out of 36 (36%) TCC from the ocular fluid or the peripheral blood of these patients, respectively. Most of HTLV-I-infected TCC had a CD3+ CD4+ CD8- phenotype. HTLV-I infection on TCC was confirmed by analysis of the viral mRNA, nucleotide sequence, virus-associated proteins, and virus particles. HTLV-I-infected TCC, but not HTLV-I negative TCC, constitutively produced high amounts of IL-6 (1,336 +/- 1,050 pg/ml) and TNF-alpha (289 +/- 237 pg/ml) in the absence of any stimuli. HTLV-I-infected TCC from the ocular lesion also constitutively produced high amounts of IL-1 alpha (12,699 pg/ml), IL-2 (61 pg/ml), IL-3 (428 pg/ml), IL-8 (1,268 pg/ml), IL-10 (28 pg/ml), IFN-gamma (5,095 pg/ml), and GM-CSF (2,886 pg/ml). Hydrocortisone, a drug effective in vivo for the treatment of HTLV-I uveitis, severely depressed cytokine production in vitro in most cases. In summary, the results demonstrated direct evidence of HTLV-I infection of the eye and suggest that cytokines produced by HTLV-I-infected T cells are responsible for the intraocular inflammation in patients with HTLV-I uveitis.
K Sagawa, M Mochizuki, K Masuoka, K Katagiri, T Katayama, T Maeda, A Tanimoto, S Sugita, T Watanabe, K Itoh
The origin of myofibroblasts in stromal reaction has been a subject of controversy. To address this question definitively, we developed techniques for purification and characterization of major stromal cell types. We defined a panel of markers that could, in combination, unequivocally distinguish these cell types by immunocytochemistry, iso-electric focusing, immunoblotting, and two-dimensional gel electrophoresis. We then devised an assay to recapitulate in culture, within two weeks of incubation, critical aspects of the microenvironment in vivo including the typical tissue histology and stromal reaction. When confronted with tumor cells in this assay, fibroblasts readily converted into a graded pattern of myogenic differentiation, strongest in the immediate vicinity of tumor cells. Vascular smooth muscle cells (VSMC), in contrast, did not change appreciably and remained coordinately smooth muscle differentiated. Midcapillary pericytes showed only a slight propensity for myogenic differentiation. Analysis of ten primary tumors implicated converted fibroblasts (10/10), vascular smooth muscle cells (4/10), and pericytes (1/10) in the stromal reaction. Tumor cells were shown to specifically denude the venules both in culture and in vivo, explaining the VSMC phenotype in the stroma. The establishment of this assay and clarification of the origin of these cells pave the way for further analysis of the mechanisms of conversion, and of the consequence of such heterogeneity for diagnosis and treatment.
L Rønnov-Jessen, O W Petersen, V E Koteliansky, M J Bissell
The Marfan syndrome (MFS) is a connective tissue disorder inherited as an autosomal dominant trait and caused by mutations in the gene encoding fibrillin, a 350-kD glycoprotein that multimerizes to form extracellular microfibrils. It has been unclear whether disease results from a relative deficiency of wild-type fibrillin; from a dominant-negative effect, in which mutant fibrillin monomers disrupt the function of the wild-type protein encoded by the normal allele; or from a dynamic and variable interplay between these two pathogenetic mechanisms. We have now addressed this issue in a cell culture system. A mutant fibrillin allele from a patient with severe MFS was expressed in normal human and murine fibroblasts by stable transfection. Immunohistochemical analysis of the resultant cell lines revealed markedly diminished fibrillin deposition and disorganized microfibrillar architecture. Pulse-chase studies demonstrated normal levels of fibrillin synthesis but substantially reduced deposition into the extracellular matrix. These data illustrate that expression of a mutant fibrillin allele, on a background of two normal alleles, is sufficient to disrupt normal microfibrillar assembly and reproduce the MFS cellular phenotype. This underscores the importance of the fibrillin amino-terminus in normal microfibrillar assembly and suggests that expression of the human extreme 5' fibrillin coding sequence may be sufficient, in isolation, to produce an animal model of MFS. Lastly, this substantiation of a dominant-negative effect offers mutant allele knockout as a potential strategy for gene therapy.
Z A Eldadah, T Brenn, H Furthmayr, H C Dietz
Human bone marrow contains a distinct cell population that expresses bone proteins and responds to transforming growth factor beta 1 (TGF-beta), but not to hematopoietic growth factors (Long, M. W., J. L. Williams, and K. G. Mann. 1990. J. Clin. Invest. 86:1387-1395). We now report the isolation, characterization, and growth factor responsiveness of these precursors to human osteoblasts and the identification of a human osteoprogenitor cell. Immunological separation of human bone marrow nonadherent low-density (NALD) cells results in a marked enrichment of cells that express osteocalcin, osteonectin, and bone alkaline phosphatase. Flow cytometric analyses show that distinct cell subpopulations exist among these isolated cells. The majority of the bone antigen-positive cells are approximately the size of a lymphocyte, whereas other, less frequent antibody-separated subpopulations consist of osteoblast-like cells and osteoprogenitor cells. In serum-free cultures, TGF-beta stimulates the small, antigen-positive cells to become osteoblast-like, as these cells both increase in size, and express increased levels of osteocalcin and alkaline phosphatase. Antibody-separated cells also contain a separate population of clonal progenitor cells that form colonies of osteoblast-like cells when cultured in serum-free, semi-solid media. Two types of human osteoprogenitor cells are observed: a colony-forming cell (CFC) that generates several hundred bone antigen-positive cells, and a more mature cluster-forming cell that has a lesser proliferative potential and thus generates clusters of 20-50 antigen-positive cells. Osteopoietic colony-forming cells and cluster-forming cells have an obligate but differential requirement for osteogenic growth factors. The CFCs respond to TGF-beta, basic fibroblast growth factor (bFGF), bone morphogenic protein-2 (BMP-2), and 1, 25-dihydroxy vitamin D3 (1,25-OH D3). In contrast to the colony-forming cells, cluster-forming cells are regulated predominantly by 1,25-OH D3 and TGF-beta, but fail to respond to bFGF. We conclude that human bone marrow contains a nonhematogenous, heterogeneous population of bone precursor cells among which exists a population of proliferating osteoprogenitor cells. Further characterization of these bone precursor cell populations should yield important information on their role in osteogenesis in both health and disease.
M W Long, J A Robinson, E A Ashcraft, K G Mann
The molecular basis of human heart failure is unknown. Alterations in calcium homeostasis have been observed in failing human heart muscles. Intracellular calcium-release channels regulate the calcium flux required for muscle contraction. Two forms of intracellular calcium-release channels are expressed in the heart: the ryanodine receptor (RyR) and the inositol 1,4,5-trisphosphate receptor (IP3R). In the present study we showed that these two cardiac intracellular calcium release channels were regulated in opposite directions in failing human hearts. In the left ventricle, RyR mRNA levels were decreased by 31% (P < 0.025) whereas IP3R mRNA levels were increased by 123% (P < 0.005). In situ hybridization localized both RyR and IP3R mRNAs to human cardiac myocytes. The relative amounts of IP3 binding sites increased approximately 40% compared with ryanodine binding sites in the failing heart. RyR down-regulation could contribute to impaired contractility; IP3R up regulation may be a compensatory response providing an alternative pathway for mobilizing intracellular calcium release, possibly contributing to the increased diastolic tone associated with heart failure and the hypertrophic response of failing myocardium.
L O Go, M C Moschella, J Watras, K K Handa, B S Fyfe, A R Marks
J M Puck, A E Pepper, P M Bédard, R Laframboise
Deregulated expression of the c-Myc oncoprotein occurs in several human malignancies. The c-Myc protein behaves as a transcription factor, and undoubtedly its role in carcinogenesis involves its ability to affect the expression of genes involved in cell growth. c-Myc has been reported to both activate and repress transcription in transient transfection experiments using reporter constructs bearing multiple copies of the c-Myc binding site, CAC (G/A) TG. We investigated these apparently paradoxical effects of c-Myc by determining if they arose from differences in the cell proliferation states of transfected cells. We found that endogenous c-Myc protein levels vary inversely with the degree of cell confluency, such that at low cell confluency, where endogenous levels of c-Myc are high and presumably endogenous levels of Max are limiting, exogenous c-Myc fails to affect basal transcription. In cells at high cell confluency, in which endogenous c-Myc levels are low, exogenous c-Myc augments transactivation by titrating the relative excess endogenous Max. These observations suggest that the apparently paradoxical behavior of c-Myc in transfection experiments is partially dependent on ambient cellular levels of c-Myc.
L A Lee, L M Resar, C V Dang
To investigate the molecular basis of the phenotypic heterogeneity in congenital erythropoietic porphyria, the mutations in the uroporphyrinogen III synthase gene from unrelated patients were determined. Six missense (L4F, Y19C, V82F, V99A, A104V, and G225S), a nonsense (Q249X), a frameshift (633insA), and two splicing mutations (IVS2+1 and IVS9 delta A + 4) were identified. When L4F, Y19C, V82F, V99A, A104V, 633insA, G225S, and Q249X were expressed in Escherichia coli, only the V82F, V99A, and A104V alleles expressed residual enzymatic activity. Of note, the V82F mutation, which occurs adjacent to the 5' donor site of intron 4, resulted in approximately 54% aberrantly spliced transcripts with exon 4 deleted. Thus, this novel exonic single-base substitution caused two lesions, a missense mutation and an aberrantly spliced transcript. Of the splicing mutations, the IVS2+1 allele produced a single transcript with exon 2 deleted, whereas the IVS9 delta A+4 allele was alternatively spliced, approximately 26% being normal transcripts and the remainder with exon 9 deleted. The amount of residual activity expressed by each allele provided a basis to correlate genotype with disease severity, thereby permitting genotype/phenotype predictions in this clinically heterogeneous disease.
W Xu, C A Warner, R J Desnick
The extravasation of T cells at sites of inflammation is critically dependent on the activity of homing receptors (HR) involved in endothelial cell recognition and binding. Two such HR (the cutaneous lymphocyte antigen [CLA] and L-selectin) have been shown to be selectively involved in T cell migration to skin and peripheral lymph nodes, respectively. This study was designed to assess the relationship between the organ specificity of an allergic reaction to food and the expression of HR on T cells activated in vitro by the relevant food allergen. Peripheral blood mononuclear cells were isolated from seven milk allergic children with a history of eczema when exposed to milk. All patients had a positive prick skin test and double-blind placebo-controlled food challenge to milk. 10 children with either allergic eosinophilic gastroenteritis or milk-induced enterocolitis and 8 nonatopic adults served as controls. Five-parameter flow cytometry using monoclonal antibodies was used for detection of the specific HR on freshly isolated T cells versus T cell blasts induced by a 6-d incubation with casein, as compared with Candida albicans. After in vitro stimulation with casein, but not C. albicans, patients with milk allergy and atopic dermatitis had a significantly greater percentage of CLA+ T cells (P < 0.01) than controls with milk-induced enterocolitis, allergic eosinophilic gastroenteritis, or nonatopic healthy controls. In contrast, the percentage of L-selectin-expressing T cells did not differ significantly between these groups. These data suggest that after casein stimulation allergic patients with milk-induced skin disease have an expanded population of CLA+ T cells, as compared with nonatopics or allergic patients without skin involvement. We postulate that heterogeneity in the regulation of HR expression on antigen-specific T cells may play a role in determining sites of involvement in tissue-directed allergic responses.
K J Abernathy-Carver, H A Sampson, L J Picker, D Y Leung