Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Tolerance induction ameliorates allograft vasculopathy in rat aortic transplants. Influence of Fas-mediated apoptosis.
L M Akyürek, … , K Funa, G Tufveson
L M Akyürek, … , K Funa, G Tufveson
Published June 15, 1998
Citation Information: J Clin Invest. 1998;101(12):2889-2899. https://doi.org/10.1172/JCI1177.
View: Text | PDF
Research Article

Tolerance induction ameliorates allograft vasculopathy in rat aortic transplants. Influence of Fas-mediated apoptosis.

  • Text
  • PDF
Abstract

Based on successful induction of donor-specific unresponsiveness by alloantigenic stimulation in several animal models of acute rejection, we hypothesized that similar immune manipulations would also inhibit the evolution of chronic rejection and transplant vasculopathy. To induce immune tolerance, DA rats received a PVG heart allograft and were immunosuppressed with cyclosporine for 30 d. At day 100 the animals were challenged with a PVG aortic allograft after either 1 or 18 h of cold ischemia. 8 wk after the aortic transplantation, the grafts were investigated for morphological changes, infiltrating cells, apoptosis, and Fas-Fas ligand expression. Control allografts showed advanced transplant arteriosclerosis, whereas tolerance-induced aortic allografts displayed reduced neointimal formation, less medial atrophy, fewer apoptotic cells, and fewer Fas- and FasL-expressing cells. Prolonged ischemic storage time did not profoundly alter the morphological changes of the allografts. Fas expression was found in T cells, macrophages, vascular smooth muscle cells, and endothelial cells, whereas FasL was expressed mainly by T cells and macrophages. FasL mRNA expression was evident throughout the entire allograft wall. In conclusion, induction of allospecific tolerance can effectively prevent transplant arteriosclerosis. Cold ischemia damage does not abrogate the beneficial effect of tolerance, but creates a separate identity of mainly endothelial lesions. Furthermore, Fas-mediated apoptosis appears to be involved in the pathological lesions seen in chronic rejection.

Authors

L M Akyürek, C Johnsson, D Lange, P Georgii-Hemming, E Larsson, B C Fellström, K Funa, G Tufveson

×

Full Text PDF

Download PDF (760.50 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts