Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Sepsis stimulates nonlysosomal, energy-dependent proteolysis and increases ubiquitin mRNA levels in rat skeletal muscle.
G Tiao, … , J E Fischer, P O Hasselgren
G Tiao, … , J E Fischer, P O Hasselgren
Published December 1, 1994
Citation Information: J Clin Invest. 1994;94(6):2255-2264. https://doi.org/10.1172/JCI117588.
View: Text | PDF
Research Article

Sepsis stimulates nonlysosomal, energy-dependent proteolysis and increases ubiquitin mRNA levels in rat skeletal muscle.

  • Text
  • PDF
Abstract

We tested the role of different intracellular proteolytic pathways in sepsis-induced muscle proteolysis. Sepsis was induced in rats by cecal ligation and puncture; controls were sham operated. Total and myofibrillar proteolysis was determined in incubated extensor digitorum longus muscles as release of tyrosine and 3-methylhistidine, respectively. Lysosomal proteolysis was assessed by using the lysosomotropic agents NH4Cl, chloroquine, leupeptin, and methylamine. Ca(2+)-dependent proteolysis was determined in the absence or presence of Ca2+ or by blocking the Ca(2+)-dependent proteases calpain I and II. Energy-dependent proteolysis was determined in muscles depleted of ATP by 2-deoxyglucose and 2.4-dinitrophenol. Muscle ubiquitin mRNA and the concentrations of free and conjugated ubiquitin were determined by Northern and Western blots, respectively, to assess the role of the ATP-ubiquitin-dependent proteolytic pathway. Total and myofibrillar protein breakdown was increased during sepsis by 50 and 440%, respectively. Lysosomal and Ca(2+)-dependent proteolysis was similar in control and septic rats. In contrast, energy-dependent total and myofibrillar protein breakdown was increased by 172% and more than fourfold, respectively, in septic muscle. Ubiquitin mRNA was increased severalfold in septic muscle. The results suggest that the increase in muscle proteolysis during sepsis is due to an increase in nonlysosomal energy-dependent protein breakdown, which may involve the ubiquitin system.

Authors

G Tiao, J M Fagan, N Samuels, J H James, K Hudson, M Lieberman, J E Fischer, P O Hasselgren

×

Full Text PDF

Download PDF (2.04 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts