Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Proliferation-dependent changes in release of arachidonic acid from endothelial cells.
R E Whatley, … , T M McIntyre, S M Prescott
R E Whatley, … , T M McIntyre, S M Prescott
Published November 1, 1994
Citation Information: J Clin Invest. 1994;94(5):1889-1900. https://doi.org/10.1172/JCI117539.
View: Text | PDF
Research Article

Proliferation-dependent changes in release of arachidonic acid from endothelial cells.

  • Text
  • PDF
Abstract

Stimulation of endothelial cells resulted in release of arachidonic acid from phospholipids. The magnitude of this response decreased as the cells became confluent and the change coincided with a decrease in the percentage of cells in growth phases (G2+M); this was not a consequence of time in culture or a factor in the growth medium. Preconfluent cells released approximately 30% of arachidonic acid; confluent cells released only 6%. The decreasing release of arachidonic acid was demonstrated using metabolic labeling, mass measurements of arachidonic acid, and measurement of PGI2. The decrease was not due to a changing pool of arachidonic acid, and mass measurements showed no depletion of arachidonic acid. Release from each phospholipid and from each phospholipid class decreased with confluence. Conversion of confluent cells to the proliferative phenotype by mechanical wounding of the monolayer caused increased release of arachidonic acid. Potential mechanisms for these changes were investigated using assays of phospholipase activity. Phospholipase A2 activity changed in concert with the alteration in release, a consequence of changes in phosphorylation of the enzyme. The increased release of arachidonic acid from preconfluent, actively dividing cells may have important physiologic implications and may help elucidate mechanisms regulating release of arachidonic acid.

Authors

R E Whatley, K Satoh, G A Zimmerman, T M McIntyre, S M Prescott

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 186 8
PDF 68 11
Scanned page 454 0
Citation downloads 60 0
Totals 768 19
Total Views 787
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts