Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Repeated electroconvulsive shock produces long-lasting increases in messenger RNA expression of corticotropin-releasing hormone and tyrosine hydroxylase in rat brain. Therapeutic implications.
L S Brady, … , D Q Le, M Herkenham
L S Brady, … , D Q Le, M Herkenham
Published September 1, 1994
Citation Information: J Clin Invest. 1994;94(3):1263-1268. https://doi.org/10.1172/JCI117444.
View: Text | PDF
Research Article Article has an altmetric score of 3

Repeated electroconvulsive shock produces long-lasting increases in messenger RNA expression of corticotropin-releasing hormone and tyrosine hydroxylase in rat brain. Therapeutic implications.

  • Text
  • PDF
Abstract

Electroconvulsive shock (ECS) is a highly effective therapy for the treatment of major depression, but its mechanisms of action are not known. We report that repeated ECS in rats produces enduring changes in two clinically relevant stress-responsive brain systems: (a) the hypothalamic-pituitary-adrenal axis regulated by corticotropin-releasing hormone (CRH) in the paraventricular nucleus; and (b) the NE system in the locus coeruleus regulated by tyrosine hydroxylase (TH). CRH and TH mRNA levels in these brain regions were assessed by in situ hybridization histochemistry. A single interaural ECS elevated TH but not CRH mRNA measured 24 h later. Repeated daily treatments (3, 7, or 14) elevated both mRNAs, maximally with 7, correlating with the time course of clinical efficacy. The elevations persisted for 3 (CRH) or 8 wk (TH) after the ECS. No other therapeutic treatment is known to produce such long-lasting changes in central nervous system gene expression. The time course of events (delayed onset, long duration) implicate CRH as a principal mediator of the antidepressant effects of ECS. The locus coeruleus-NE system may be important in initiating the central nervous system response.

Authors

L S Brady, A B Lynn, J R Glowa, D Q Le, M Herkenham

×

Full Text PDF

Download PDF (2.00 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
26 readers on Mendeley
See more details