Cardiopulmonary bypass (CPB) is used increasingly to correct cyanotic heart defects during early infancy, but myocardial dysfunction is often seen after surgical repair. This study evaluates whether starting CPB at a conventional, hyperoxic pO2 causes an "unintentional" reoxygenation (ReO2) injury. We subjected 2-wk-old piglets to ventilator hypoxemia (FIO2 approximately 0.06, pO2 approximately 25 mmHg) followed by 5 min of ReO2 on CPB before instituting cardioplegia. CPB was begun in hypoxemic piglets by either abrupt ReO2 at a pO2 of 400 mmHg (standard clinical practice) or by maintaining pO2 approximately 25 mmHg on CPB until controlling ReO2 with blood cardioplegic arrest. The effects of abrupt vs. gradual ReO2 without surgical ischemia (blood cardioplegia) were also compared. Myocardial nitric oxide (NO) production (chemiluminescence measurements of NO2- + NO3-) and conjugated diene (CD) generation (spectrophotometric A233 measurements of lipid extracts) using aortic and coronary sinus blood samples were assessed during cardioplegic induction. 30 min after CPB, left ventricular end-systolic elastance (Ees, catheter conductance method) was used to determine cardiac function. CPB and blood cardioplegic arrest caused no functional or biochemical change in normoxic (control) hearts. Abrupt ReO2 caused a depression of myocardial function (Ees = 25 +/- 5% of control). Functional depression was relatively unaffected by gradual ReO2 without blood cardioplegia (34% recovery of Ees), and abrupt ReO2 immediately before blood cardioplegia caused a 10-fold rise in cardiac NO and CD production, with subsequent depression of myocardial function (Ees 21 +/- 2% of control). In contrast, controlled cardiac ReO2 reduced NO production 94%, CD did not rise, and Ees was 83 +/- 8% of normal. We conclude ReO2 injury is related to increased NO production during abrupt ReO2, nullifies the cardioprotective effects of blood cardioplegia, and that controlled cardiac ReO2 when starting CPB to correct cyanotic heart defects may reduce NO production and improve myocardial status postoperatively.
K Morita, K Ihnken, G D Buckberg, M P Sherman, H H Young, L J Ignarro