Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Activation of H+ conductance in neutrophils requires assembly of components of the respiratory burst oxidase but not its redox function.
A Nanda, … , J T Curnutte, S Grinstein
A Nanda, … , J T Curnutte, S Grinstein
Published April 1, 1994
Citation Information: J Clin Invest. 1994;93(4):1770-1775. https://doi.org/10.1172/JCI117162.
View: Text | PDF
Research Article

Activation of H+ conductance in neutrophils requires assembly of components of the respiratory burst oxidase but not its redox function.

  • Text
  • PDF
Abstract

In phagocytes, superoxide generation by the NADPH oxidase is accompanied by metabolic acid production. Cytoplasmic acidification during this metabolic burst is prevented by a combination of H+ extrusion mechanisms, including a unique H+ conductance. NADPH oxidase is deficient in chronic granulomatous disease (CGD) patients. The burst of acid production is absent in CGD patients lacking the 47-kD (p47-phox) or the 91-kD (gp91-phox) subunits of the oxidase. Activation of the H+ conductance is also defective in these patients suggesting that (a) the oxidase itself undertakes H+ translocation or (b) oxidase assembly is required to stimulate a separate H+ conducting entity. To discern between these possibilities, three rare forms of CGD were studied. In neutrophils expressing nonfunctional cytochrome b, the conductance was activated to near-normal levels, implying that functional oxidase is not required to activate H+ extrusion. CGD cells expressing diminished amounts of cytochrome displayed H+ conductance approaching normal levels, suggesting that the oxidase itself does not translocate H+. Finally, the conductance was only partially inhibited in patients lacking the 67-kD subunit, indicating that this component is not essential for stimulation of H+ transport. We propose that normal assembly of the oxidase subunits is required for optimal activation of a closely associated but distinct H+ conducting entity.

Authors

A Nanda, J T Curnutte, S Grinstein

×

Total citations by year

Year: 2014 2012 2010 2009 2008 2007 2006 2004 2003 2002 2001 2000 1999 1998 1996 1995 1994 Total
Citations: 1 1 1 2 1 1 1 1 4 11 3 1 3 1 3 1 1 37
Citation information
This citation data is accumulated from CrossRef, which receives citation information from participating publishers, including this journal. Not all publishers participate in CrossRef, so this information is not comprehensive. Additionally, data may not reflect the most current citations to this article, and the data may differ from citation information available from other sources (for example, Google Scholar, Web of Science, and Scopus).

Citations to this article in year 2014 (1)

Title and authors Publication Year
Voltage-Gated Proton Channels as Novel Drug Targets: From NADPH Oxidase Regulation to Sperm Biology
T Seredenina, N Demaurex, KH Krause
Antioxidants & Redox Signaling 2014

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts