Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Bone marrow extracellular matrix molecules improve gene transfer into human hematopoietic cells via retroviral vectors.
T Moritz, … , V P Patel, D A Williams
T Moritz, … , V P Patel, D A Williams
Published April 1, 1994
Citation Information: J Clin Invest. 1994;93(4):1451-1457. https://doi.org/10.1172/JCI117122.
View: Text | PDF
Research Article Article has an altmetric score of 9

Bone marrow extracellular matrix molecules improve gene transfer into human hematopoietic cells via retroviral vectors.

  • Text
  • PDF
Abstract

Direct contact between hematopoietic cells and viral packaging cell lines or other sources of stroma has been shown to increase the efficiency of retroviral-mediated gene transfer into these target cells compared with infection with viral supernatant. We have investigated the role of defined bone marrow extracellular matrix molecules (ECM) in this phenomenon. Here we report that infection of cells adhering to the carboxy-terminal 30/35-kD fragment of the fibronectin molecule (30/35 FN), which contains the alternatively spliced CS-1 cell adhesion domain, significantly increases gene transfer into hematopoietic cells. Two retroviral vectors differing in recombinant viral titer were used. Gene transfer into committed progenitor cells and long-term culture-initiating cells, an in vitro assay for human stem cells, was significantly increased when the cells were infected while adherent to 30/35 FN-coated plates compared with cells infected on BSA-coated control plates or plates coated with other bone marrow ECM molecules. Although gene transfer into committed progenitor cells and to a lesser degree into long-term culture-initiating cells was increased on intact fibronectin as well, increased gene transfer efficiency into hematopoietic cells on 30/35 FN was dependent on CS-1 sequence since infection on a similar FN fragment lacking CS-1 (42 FN) was suboptimal. 30/35 FN has previously been shown by our laboratory and other investigators to mediate adhesion of primitive murine and human hematopoietic stem cells to the hematopoietic microenvironment. Additional studies showed that neither soluble 30/35 FN nor nonspecific binding of hematopoietic cells to poly-L-lysine-coated plates had any appreciable effect on the infection efficiency of these cells. Our findings indicate that hematopoietic stem cell adhesion to specific ECM molecules alters retroviral infection efficiency. These findings should aid in the design of gene transfer protocols using hematopoietic progenitor and stem cells for somatic gene therapy.

Authors

T Moritz, V P Patel, D A Williams

×

Full Text PDF

Download PDF (1.56 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 19 patents
19 readers on Mendeley
See more details