Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Cocaine differentially inhibits neuronal differentiation and proliferation in vitro.
D Zachor, … , C T Fay, I Ocrant
D Zachor, … , C T Fay, I Ocrant
Published March 1, 1994
Citation Information: J Clin Invest. 1994;93(3):1179-1185. https://doi.org/10.1172/JCI117071.
View: Text | PDF
Research Article

Cocaine differentially inhibits neuronal differentiation and proliferation in vitro.

  • Text
  • PDF
Abstract

The outcome of in utero cocaine exposure is unclear. To determine if cocaine affects neuronal growth and differentiation, we used PC-12 cells, which have a mitogenic response to IGF-I and differentiate into neurons on exposure to nerve growth factor. Differentiation was quantified as neurite extension after a 72-h exposure to 20 ng/ml nerve growth factor (dosage at 50% maximal effectiveness) and cocaine doses ranging from 0.01 to 10 micrograms/ml. The results were 49 +/- 2, 40 +/- 3, 29 +/- 2, 23 +/- 2, and 12 +/- 2% differentiation with respective cocaine concentrations of 0, 0.01, 0.1, 1, and 10 micrograms/ml (P < 0.0001). Cocaine stability studies showed insignificant spontaneous hydrolysis under the conditions of this study. Cocaine did not affect cell viability or number, but had a relatively modest, statistically significant (P < 0.001) inhibitory effect on IGF-I-stimulated thymidine incorporation. The dose-response curves for differentiation vs mitogenic response differed significantly (P = 0.021). Therefore, cocaine inhibition of these processes is probably mediated by different mechanisms, and not caused by generalized toxicity. To our knowledge, this is the first demonstration of cocaine effects on neuronal multiplication and differentiation in vitro. The results suggest in utero exposure may directly impair brain development.

Authors

D Zachor, J K Cherkes, C T Fay, I Ocrant

×

Full Text PDF

Download PDF (1.90 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts