Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle.
Y P Zhou, V E Grill
Y P Zhou, V E Grill
Published February 1, 1994
Citation Information: J Clin Invest. 1994;93(2):870-876. https://doi.org/10.1172/JCI117042.
View: Text | PDF
Research Article Article has an altmetric score of 3

Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle.

  • Text
  • PDF
Abstract

We tested effects of long-term exposure of pancreatic islets to free fatty acids (FFA) in vitro on B cell function. Islets isolated from male Sprague-Dawley rats were exposed to palmitate (0.125 or 0.25 mM), oleate (0.125 mM), or octanoate (2.0 mM) during culture. Insulin responses were subsequently tested in the absence of FFA. After a 48-h exposure to FFA, insulin secretion during basal glucose (3.3 mM) was several-fold increased. However, during stimulation with 27 mM glucose, secretion was inhibited by 30-50% and proinsulin biosynthesis by 30-40%. Total protein synthesis was similarly affected. Conversely, previous palmitate did not impair alpha-ketoisocaproic acid (5 mM)-induced insulin release. Induction and reversibility of the inhibitory effect on glucose-induced insulin secretion required between 6 and 24 h. Addition of the carnitine palmitoyltransferase I inhibitor etomoxir (1 microM) partially reversed (by > 50%) FFA-associated decrease in secretory as well as proinsulin biosynthetic responses to 27 mM glucose. The inhibitory effect of previous palmitate was similar when co-culture was performed with 5.5, 11, or 27 mM glucose. Exposure to palmitate or oleate reduced the production of 14CO2 from D-[U-14C]glucose, and of 14CO2 from D-[3,4-14C]-glucose, both effects being reversed by etomoxir. Conclusions: long-term exposure to FFA inhibits glucose-induced insulin secretion and biosynthesis probably through a glucose fatty acid cycle.

Authors

Y P Zhou, V E Grill

×

Full Text PDF

Download PDF (1.40 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 patents
171 readers on Mendeley
1 readers on CiteULike
See more details