Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (78)

Advertisement

Research Article Free access | 10.1172/JCI116953

Hypoxic and ischemic hypoxia exacerbate brain injury associated with metabolic encephalopathy in laboratory animals.

Z S Vexler, J C Ayus, T P Roberts, C L Fraser, J Kucharczyk, and A I Arieff

Neuroradiology Section, University of California at San Francisco 94143.

Find articles by Vexler, Z. in: PubMed | Google Scholar

Neuroradiology Section, University of California at San Francisco 94143.

Find articles by Ayus, J. in: PubMed | Google Scholar

Neuroradiology Section, University of California at San Francisco 94143.

Find articles by Roberts, T. in: PubMed | Google Scholar

Neuroradiology Section, University of California at San Francisco 94143.

Find articles by Fraser, C. in: PubMed | Google Scholar

Neuroradiology Section, University of California at San Francisco 94143.

Find articles by Kucharczyk, J. in: PubMed | Google Scholar

Neuroradiology Section, University of California at San Francisco 94143.

Find articles by Arieff, A. in: PubMed | Google Scholar

Published January 1, 1994 - More info

Published in Volume 93, Issue 1 on January 1, 1994
J Clin Invest. 1994;93(1):256–264. https://doi.org/10.1172/JCI116953.
© 1994 The American Society for Clinical Investigation
Published January 1, 1994 - Version history
View PDF
Abstract

Hypoxemia is a major comorbid factor for permanent brain damage in several metabolic encephalopathies. To determine whether hypoxia impairs brain adaptation to hyponatremia, worsening brain edema, we performed in vitro and in vivo studies in cats and rats with hyponatremia plus either ischemic or hypoxic hypoxia. Mortality with hypoxic hypoxia was 0%; with hyponatremia, 22%; and with hyponatremia+hypoxia, 100%. Hyponatremia in cats produced brain edema, with a compensatory decrease of brain sodium. Ischemic hypoxia also resulted in brain edema, but with elevation of brain sodium. However, when ischemic hypoxia was superimposed upon hyponatremia, there was elevation of brain sodium with further elevation of water. Outward sodium transport in cat cerebral cortex synaptosomes was measured via three major pathways through which brain osmolality can be decreased. After hyponatremia, sodium transport was significantly altered such that brain cell osmolality would decrease: 44% increase in Na(+)-K(+)-ATPase transport activity (ouabain inhibitable); 26% decrease in amiloride-sensitive sodium uptake. The change in veratridine-stimulated sodium uptake was not significant (P > 0.05). When ischemic hypoxia was superimposed upon hyponatremia, all of the cerebral adaptive changes induced by hyponatremia alone were eliminated. Thus, hypoxia combined with hyponatremia produces a major increase in brain edema and mortality, probably by eliminating the compensatory mechanisms of sodium transport initiated by hyponatremia that tend to minimize brain swelling.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 256
page 256
icon of scanned page 257
page 257
icon of scanned page 258
page 258
icon of scanned page 259
page 259
icon of scanned page 260
page 260
icon of scanned page 261
page 261
icon of scanned page 262
page 262
icon of scanned page 263
page 263
icon of scanned page 264
page 264
Version history
  • Version 1 (January 1, 1994): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (78)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts