Neutrophils contain at least two types of secretory granules. The present work links the secretion of the (lysosomal type) azurophil granules, but not that of specific granules, to endosomal transport mechanisms. (a) Selective stimulation of azurophil granule secretion by the Na-ionophore Monensin, or nonselective stimulation by FMLP after cytochalasin B pretreatment elicited marked pinocytic activity in parallel with azurophil granule release, whereas FMLP alone, selective for specific granules, elicited little fluid pinocytosis. (b) Pinosomes thus formed fused with azurophil granules, suggesting that exocytosis of azurophil granules might occur via endosomal organelles. This hypothesis was tested by determining the effect on the endosomal pathway(s) of two treatments that selectively prevent the release of azurophil granule contents without interfering with specific granule secretion, namely replacement of Cl- with gluconate- or the addition of zinc. Replacement of Cl- was found to impair the pinocytosis process itself, whereas ZnSO4 appeared to prevent the fusion between endosomes and azurophil granules. These data support the concept that the (lysosomal type) azurophil granules, but not the specific granules, are secreted through the endosomal pathway.
C Fittschen, P M Henson
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 145 | 2 |
69 | 29 | |
Figure | 0 | 2 |
Scanned page | 329 | 10 |
Citation downloads | 51 | 0 |
Totals | 594 | 43 |
Total Views | 637 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.