Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Apolipoprotein A-I Q[-2]X causing isolated apolipoprotein A-I deficiency in a family with analphalipoproteinemia.
D S Ng, … , P W Connelly, R A Hegele
D S Ng, … , P W Connelly, R A Hegele
Published January 1, 1994
Citation Information: J Clin Invest. 1994;93(1):223-229. https://doi.org/10.1172/JCI116949.
View: Text | PDF
Research Article

Apolipoprotein A-I Q[-2]X causing isolated apolipoprotein A-I deficiency in a family with analphalipoproteinemia.

  • Text
  • PDF
Abstract

We report a Canadian kindred with a novel mutation in the apolipoprotein (apo) A-I gene causing analphalipoproteinemia. The 34-yr-old proband, product of a consanguineous marriage, had bilateral retinopathy, bilateral cataracts, spinocerebellar ataxia, and tendon xanthomata. High density lipoprotein cholesterol (HDL-C) was < 0.1 mM and apoA-I was undetectable. Genomic DNA sequencing of the proband's apoA-I gene identified a nonsense mutation at codon [-2], which we designate as Q[-2]X. This mutation causes a loss of endonuclease digestion sites for both BbvI and Fnu4HI. Genotyping identified four additional homozygotes, four heterozygotes, and two unaffected subjects among the first-degree relatives. Q[-2]X homozygosity causes a selective failure to produce any portion of mature apoA-I, resulting in very low plasma level of HDL. Heterozygosity results in approximately half-normal apoA-I and HDL. Gradient gel electrophoresis and differential electroimmunodiffusion assay revealed that the HDL particles of the homozygotes had peak Stokes diameter of 7.9 nm and contained apoA-II without apoA-I (Lp-AII). Heterozygotes had an additional fraction of HDL3-like particles. Two of the proband's affected sisters had documented premature coronary heart disease. This kindred, the third reported apoA-I gene mutation causing isolated complete apoA-I deficiency, appears to be at significantly increased risk for atherosclerosis.

Authors

D S Ng, L A Leiter, C Vezina, P W Connelly, R A Hegele

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 168 23
PDF 42 27
Scanned page 256 7
Citation downloads 68 0
Totals 534 57
Total Views 591
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts