Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Fish eye syndrome: a molecular defect in the lecithin-cholesterol acyltransferase (LCAT) gene associated with normal alpha-LCAT-specific activity. Implications for classification and prognosis.
H G Klein, … , S Marcovina, H B Brewer Jr
H G Klein, … , S Marcovina, H B Brewer Jr
Published July 1, 1993
Citation Information: J Clin Invest. 1993;92(1):479-485. https://doi.org/10.1172/JCI116591.
View: Text | PDF
Research Article

Fish eye syndrome: a molecular defect in the lecithin-cholesterol acyltransferase (LCAT) gene associated with normal alpha-LCAT-specific activity. Implications for classification and prognosis.

  • Text
  • PDF
Abstract

We have identified the molecular defect in two siblings presenting with classical clinical and biochemical features of Fish Eye disease (FED), including corneal opacities, HDL cholesterol < 10 mg/dl, normal plasma cholesteryl esters, and elevated triglycerides. In contrast to previously reported patients with FED who are unable to esterify HDL-associated cholesterol, our patients' plasma lecithin-cholesterol acetyltransferase (alpha-LCAT)-specific activities assayed using an HDL-like proteoliposome substrate were 12.7-25.7 nmol/micrograms (19.5 +/- 1.8 in controls). In addition, significant residual cholesterol esterification was present in VLDL/LDL-depleted plasma, confirming the presence of HDL-associated alpha-LCAT activity. DNA sequence analysis of the proband's LCAT gene identified deletion of the triplet coding for leu300, which resulted in the loss of a restriction site for MlnI. Digestion of PCR-amplified DNA using MlnI established that both siblings are homozygous for this defect. Expression of LCAT300-del. in human embryonic kidney-293 cells revealed normal mRNA and intracellular LCAT concentrations. However, reduced amounts of LCAT300-del., which had a normal specific alpha-LCAT activity, were present in the media. In summary, we report the first case of FED associated with a mutant enzyme that has a normal alpha-LCAT-specific activity. The functional significance of this LCAT gene defect has been established in an in vitro expression system, which demonstrates that very small amounts of this functional LCAT mutant enzyme accumulate in the media. Characterization of LCAT300-del. established that selective alpha-LCAT deficiency is not a prerequisite for the development of FED. On the basis of our combined results, we propose that the residual amounts of total plasma LCAT activity and not its distribution on lipoproteins primarily determines the heterogeneity in phenotypic expression observed in familial LCAT deficiency syndromes.

Authors

H G Klein, S Santamarina-Fojo, N Duverger, M Clerc, M F Dumon, J J Albers, S Marcovina, H B Brewer Jr

×

Full Text PDF

Download PDF (1.46 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts