Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Vanadate treatment restores the expression of genes for key enzymes in the glucose and ketone bodies metabolism in the liver of diabetic rats.
A Valera, … , J E Rodriguez-Gil, F Bosch
A Valera, … , J E Rodriguez-Gil, F Bosch
Published July 1, 1993
Citation Information: J Clin Invest. 1993;92(1):4-11. https://doi.org/10.1172/JCI116580.
View: Text | PDF
Research Article

Vanadate treatment restores the expression of genes for key enzymes in the glucose and ketone bodies metabolism in the liver of diabetic rats.

  • Text
  • PDF
Abstract

Oral administration of vanadate to diabetic streptozotocin-treated rats decreased the high blood glucose and D-3-hydroxybutyrate levels related to diabetes. The increase in the expression of the P-enolpyruvate carboxykinase (PEPCK) gene, the main regulatory enzyme of gluconeogenesis, was counteracted in the liver and the kidney after vanadate administration to diabetic rats. Vanadate also counteracted the induction in tyrosine aminotransferase gene expression due to diabetes and was able to increase the expression of the glucokinase gene to levels even higher than those found in healthy animals. Similarly, an induction in pyruvate kinase mRNA transcripts was observed in diabetic vanadate-treated rats. These effects were correlated with changes on glucokinase and pyruvate kinase activities. Vanadate treatment caused a decrease in the expression of the liver-specific glucose transporter, GLUT-2. Thus, vanadate was able to restore liver glucose utilization and block glucose production in diabetic rats. The increase in the expression of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCoAS) gene, the key regulatory enzyme in the ketone bodies production pathway, observed in diabetic rats was also blocked by vanadate. Furthermore, a similar pattern in the expression of PEPCK, GLUT-2, HMGCoAS, and the transcription factor CCAAT/enhancer-binding protein alpha genes has been observed. All of these results suggest that the regulation of the expression of genes involved in the glucose and ketone bodies metabolism could be a key step in the normalization process induced by vanadate administration to diabetic rats.

Authors

A Valera, J E Rodriguez-Gil, F Bosch

×

Full Text PDF

Download PDF (1.96 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts