Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Isolation of a human myocardial cytosolic phospholipase A2 isoform. Fast atom bombardment mass spectroscopic and reverse-phase high pressure liquid chromatography identification of choline and ethanolamine glycerophospholipid substrates.
S L Hazen, … , D A Ford, R W Gross
S L Hazen, … , D A Ford, R W Gross
Published June 1, 1993
Citation Information: J Clin Invest. 1993;91(6):2513-2522. https://doi.org/10.1172/JCI116487.
View: Text | PDF
Research Article

Isolation of a human myocardial cytosolic phospholipase A2 isoform. Fast atom bombardment mass spectroscopic and reverse-phase high pressure liquid chromatography identification of choline and ethanolamine glycerophospholipid substrates.

  • Text
  • PDF
Abstract

Recent studies have demonstrated the existence of a novel family of calcium-independent plasmalogen-selective phospholipases A2 in canine myocardium that have been implicated as enzymic mediators of ischemic membrane damage. We now report that human myocardium contains two functionally distinct isoforms of cytosolic calcium-independent phospholipase A2. The major cytosolic phospholipase A2 isoform preferentially hydrolyzes plasmalogen substrate, possesses a pH optimum of 7.0, and is chromatographically resolvable from a minor cytosolic calcium-independent phospholipase A2 isoform that hydrolyzes plasmenylcholine and phosphatidylcholine substrates at similar rates and possesses a pH optimum of 8.5. The major cytosolic calcium-independent phospholipase A2 isoform was identified as a 40-kD polypeptide after its 182,000-fold purification by sequential column chromatographies to a final specific activity of 67 mumol/mg.min. The purified 40-kD human myocardial phospholipase A2 preferentially hydrolyzes plasmalogens containing arachidonic acid at the sn-2 position. Both reverse-phase HPLC and fast atom bombardment mass spectroscopic analysis of human myocardial ethanolamine and choline glycerophospholipids demonstrated that plasmenylethanolamine and plasmenylcholine molecular species containing arachidonic acid at the sn-2 position are prominent constituents of human myocardium. Collectively, these results identify and characterize the major human myocardial cytosolic calcium-independent phospholipase A2 activity, demonstrate the presence of functionally distinct human myocardial cytosolic calcium-independent phospholipase A2 isoforms, and document the abundance of arachidonoylated plasmalogen molecular species in human myocardium that serve as substrates.

Authors

S L Hazen, C R Hall, D A Ford, R W Gross

×

Full Text PDF

Download PDF (1.93 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts