Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Endogenous prostaglandin E2 mediates inhibition of rat thick ascending limb Cl reabsorption in chronic hypercalcemia.
L N Peterson, … , A J McKay, J S Borzecki
L N Peterson, … , A J McKay, J S Borzecki
Published June 1, 1993
Citation Information: J Clin Invest. 1993;91(6):2399-2407. https://doi.org/10.1172/JCI116473.
View: Text | PDF
Research Article

Endogenous prostaglandin E2 mediates inhibition of rat thick ascending limb Cl reabsorption in chronic hypercalcemia.

  • Text
  • PDF
Abstract

The hypothesis that endogenous PGE2 mediates defective thick ascending limb (TAL) Cl reabsorption (percent delivered load: FRCl%) in rats with vitamin D-induced chronic hypercalcemia (HC) was tested by measuring FRCl% in loop segments microperfused in vivo in HC and control rats treated acutely with indomethacin (Indo) or its vehicle, and obtaining the corresponding outer medullary [PGE2]. Microperfusion conditions were developed in which FRCl% was exclusively furosemide sensitive. To determine the cellular mechanism, tubules were perfused acutely with forskolin (FSK), cAMP, or the protein kinase C inhibitor staurosporine (SSP). Outer medullary [PGE2] in HC rats was 9 to 10 times greater than control and could be normalized by Indo. FRCl% was 20% lower in HC rats infused with vehicle, and Indo, FSK, and cAMP returned FRCl% to normal despite sustained HC. Indo or FSK had no effect on FRCl% in control rats and Indo did not prevent inhibition of FRCl% by luminal PGE2 (1 microM). Luminal SSP (10(-7), 10(-8) M) in HC did not return FRCl% to control values. We conclude that impaired TAL FRCl% in HC occurs at a pre-cAMP site and is due to endogenous PGE2 and not to HC.

Authors

L N Peterson, A J McKay, J S Borzecki

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 115 1
PDF 73 15
Scanned page 374 1
Citation downloads 75 0
Totals 637 17
Total Views 654
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts