Cytokines have been implicated in the pathogenesis of a number of brain diseases in which neurological dysfunction has been attributed to a change in amino acid neurotransmitter metabolism. In the present in vitro study, we investigated the effects of cytokines on astrocyte glutamine synthetase (GS) activity and subsequently on N-methyl-D-aspartate (NMDA) receptor-mediated neurotoxicity. Proinflammatory cytokines IL-1 alpha, IL-1 beta, and IL-6 at a concentration of 20 ng/ml did not affect GS activity; however, tumor necrosis factor-alpha inhibited this activity by 20% in mixed neuronal/astrocyte cultures. Treatment for 24 h with transforming growth factor (TGF)-beta 1 or -beta 2 inhibited up to 60% GS activity. TGF-beta 2 also inhibited GS in enriched astrocyte cultures with an ED50 of 10 pg/ml. Antibodies specific to TGF-beta 2 blocked this effect. Treatment of astrocytes with TGF-beta 2 (250 pg/ml) resulted in markedly dilated rough endoplasmic reticulum. Since astrocyte GS may play a protective role in NMDA receptor-mediated neurotoxicity, we treated mixed neuronal/astrocyte cultures with TGF-beta 2 (250 pg/ml) and found a threefold potentiation of NMDA receptor-mediated neurotoxicity. These data suggest that TGF-beta impairs astrocyte GS function and enhances neurotoxicity, thus providing insight into understanding one mechanism of cytokine-mediated central nervous system disease.
C C Chao, S Hu, M Tsang, J Weatherbee, T W Molitor, W R Anderson, P K Peterson
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 151 | 0 |
66 | 22 | |
Figure | 0 | 6 |
Scanned page | 285 | 8 |
Citation downloads | 57 | 0 |
Totals | 559 | 36 |
Total Views | 595 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.