Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Insulin resistance in obese Zucker rat (fa/fa) skeletal muscle is associated with a failure of glucose transporter translocation.
P A King, … , M F Hirshman, E S Horton
P A King, … , M F Hirshman, E S Horton
Published October 1, 1992
Citation Information: J Clin Invest. 1992;90(4):1568-1575. https://doi.org/10.1172/JCI116025.
View: Text | PDF
Research Article

Insulin resistance in obese Zucker rat (fa/fa) skeletal muscle is associated with a failure of glucose transporter translocation.

  • Text
  • PDF
Abstract

The genetically obese Zucker rat (fa/fa) is characterized by a severe resistance to the action of insulin to stimulate skeletal muscle glucose transport. The goal of the present study was to identify whether the defect associated with this insulin resistance involves an alteration of transporter translocation and/or transporter activity. Various components of the muscle glucose transport system were investigated in plasma membranes isolated from basal or maximally insulin-treated skeletal muscle of lean and obese Zucker rats. Measurements of D- and L-glucose uptake by membrane vesicles under equilibrium exchange conditions indicated that insulin treatment resulted in a four-fold increase in the Vmax for carrier-mediated transport for lean animals [from 4.5 to 17.5 nmol/(mg.s)] but only a 2.5-fold increase for obese rats [from 3.6 to 9.1 nmol/(mg.s)]. In the lean animals, this increase in glucose transport function was associated with a 1.8-fold increase in the transporter number as indicated by cytochalasin B binding, a 1.4-fold increase in plasma membrane GLUT4 protein, and a doubling of the average carrier turnover number (intrinsic activity). In the obese animals, there was no change in plasma membrane transporter number measured by cytochalasin B binding, or in GLUT4 or GLUT1 protein. However, there was an increase in carrier turnover number similar to that seen in the lean litter mates. Measurements of GLUT4 mRNA in red gastrocnemius muscle showed no difference between lean and obese rats. We conclude that the insulin resistance of the obese rats involves the failure of translocation of transporters, while the action of insulin to increase the average carrier turnover number is normal.

Authors

P A King, E D Horton, M F Hirshman, E S Horton

×

Total citations by year

Year: 2023 2022 2021 2020 2019 2017 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1957 Total
Citations: 2 1 2 3 4 2 2 2 1 3 3 2 5 2 5 2 3 4 4 9 8 5 5 10 8 9 7 8 4 1 126
Citation information
This citation data is accumulated from CrossRef, which receives citation information from participating publishers, including this journal. Not all publishers participate in CrossRef, so this information is not comprehensive. Additionally, data may not reflect the most current citations to this article, and the data may differ from citation information available from other sources (for example, Google Scholar, Web of Science, and Scopus).

Citations to this article in year 2021 (2)

Title and authors Publication Year
Paracrine FGFs target skeletal muscle to exert potent anti-hyperglycemic effects
Ying L, Wang L, Guo K, Hou Y, Li N, Wang S, Liu X, Zhao Q, Zhou J, Zhao L, Niu J, Chen C, Song L, Hou S, Kong L, Li X, Ren J, Li P, Mohammadi M, Huang Z
Nature Communications 2021
The many actions of insulin in skeletal muscle, the paramount tissue determining glycemia
L Sylow, VL Tokarz, EA Richter, A Klip
Cell Metabolism 2021

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts