Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Intracellular ATP can regulate afferent arteriolar tone via ATP-sensitive K+ channels in the rabbit.
J N Lorenz, … , J P Briggs, P B Furspan
J N Lorenz, … , J P Briggs, P B Furspan
Published September 1, 1992
Citation Information: J Clin Invest. 1992;90(3):733-740. https://doi.org/10.1172/JCI115945.
View: Text | PDF
Research Article

Intracellular ATP can regulate afferent arteriolar tone via ATP-sensitive K+ channels in the rabbit.

  • Text
  • PDF
Abstract

Studies were performed to assess whether ATP-sensitive K+ (KATP) channels on rabbit preglomerular vessels can influence afferent arteriolar (AA) tone. K+ channels with a slope conductance of 258 +/- 13 (n = 7) pS and pronounced voltage dependence were demonstrated in excised patches from vascular smooth muscle cells of microdissected preglomerular segments. Channel activity was markedly reduced by 1 mM ATP and in a dose-dependent fashion by glibenclamide (10(-9) M to 10(-6) M), a specific antagonist of KATP channels. 10(-5) M diazoxide, a K+ channel opener, activated these channels in the presence of ATP, and this effect was also blocked by glibenclamide. To determine the role of these KATP channels in the control of vascular tone, diazoxide was tested on isolated perfused AA. After preconstriction from a control diameter of 13.1 +/- 1.1 to 3.5 +/- 2.1 microns with phenylephrine (PE), addition of 10(-5) M diazoxide dilated vessels to 11.2 +/- 0.7 microns, which was not different from control. Further addition of 10(-5) M glibenclamide reconstricted the vessels to 5.8 +/- 1.5 microns (n = 5; P less than 0.03). In support of its specificity for KATP channels, glibenclamide did not reverse verapamil induced dilation in a separate series of experiments. To determine whether intracellular ATP levels can effect AA tone, studies were conducted to test the effect of the glycolytic inhibitor 2-deoxy-D-glucose. After preconstriction from 13.4 +/- 3.2 to 7.7 +/- 1.3 microns with PE, bath glucose was replaced with 6 mM 2-deoxy-D-glucose. Within 10 min, the arteriole dilated to a mean value of 11.8 +/- 1.4 microns (n = 6; NS compared to control). Subsequent addition of 10(-5) M glibenclamide significantly reconstricted the vessels to a diameter of 8.6 +/- 0.5 micron (P less than 0.04). These data demonstrate that KATP channels are present on the preglomerular vasculature and that changes in intracellular ATP can directly influence afferent arteriolar tone via these channels.

Authors

J N Lorenz, J Schnermann, F C Brosius, J P Briggs, P B Furspan

×

Full Text PDF

Download PDF (1.88 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts