Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Magnesium relaxes arterial smooth muscle by decreasing intracellular Ca2+ without changing intracellular Mg2+.
E K D'Angelo, … , H A Singer, C M Rembold
E K D'Angelo, … , H A Singer, C M Rembold
Published June 1, 1992
Citation Information: J Clin Invest. 1992;89(6):1988-1994. https://doi.org/10.1172/JCI115807.
View: Text | PDF
Research Article

Magnesium relaxes arterial smooth muscle by decreasing intracellular Ca2+ without changing intracellular Mg2+.

  • Text
  • PDF
Abstract

Elevations in extracellular [Mg2+] ([Mg2+]o) relax vascular smooth muscle. We tested the hypothesis that elevated [Mg2+]o induces relaxation through reductions in myoplasmic [Ca2+] and myosin light chain phosphorylation without changing intracellular [Mg2+] ([Mg2+]i). Histamine stimulation of endothelium-free swine carotid medial tissues was associated with increases in both Fura 2- and aequorin-estimated myoplasmic [Ca2+], myosin phosphorylation, and force. Elevated [Mg2+]o decreased myoplasmic [Ca2+] and force to near resting values. However, elevated [Mg2+]o only transiently decreased myosin phosphorylation values: sustained [Mg2+]o-induced decreases in myoplasmic [Ca2+] and force were associated with inappropriately high myosin phosphorylation values. The elevated myosin phosphorylation during [Mg2+]o-induced relaxation was entirely on serine 19, the Ca2+/calmodulin-dependent myosin light chain kinase substrate. Myoplasmic [Mg2+] (estimated with Mag-Fura 2) did not significantly increase with elevated [Mg2+]o. These results are consistent with the hypothesis that increased [Mg2+]o induces relaxation by decreasing myoplasmic [Ca2+] without changing [Mg2+]i. These data also demonstrate dissociation of myosin phosphorylation from myoplasmic [Ca2+] and force during Mg(2+)-induced relaxation. This finding suggests the presence of a phosphorylation-independent (yet potentially Ca(2+)-dependent) mechanism for regulation of force in vascular smooth muscle.

Authors

E K D'Angelo, H A Singer, C M Rembold

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 444 923
PDF 95 80
Figure 0 1
Scanned page 415 34
Citation downloads 92 0
Totals 1,046 1,038
Total Views 2,084
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts