Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Adenosine regulates a chloride channel via protein kinase C and a G protein in a rabbit cortical collecting duct cell line.
E M Schwiebert, … , W S Spielman, B A Stanton
E M Schwiebert, … , W S Spielman, B A Stanton
Published March 1, 1992
Citation Information: J Clin Invest. 1992;89(3):834-841. https://doi.org/10.1172/JCI115662.
View: Text | PDF
Research Article

Adenosine regulates a chloride channel via protein kinase C and a G protein in a rabbit cortical collecting duct cell line.

  • Text
  • PDF
Abstract

We examined the regulation by adenosine of a 305-pS chloride (Cl-) channel in the apical membrane of a continuous cell line derived from rabbit cortical collecting duct (RCCT-28A) using the patch clamp technique. Stimulation of A1 adenosine receptors by N6-cyclohexyladenosine (CHA) activated the channel in cell-attached patches. Phorbol 12,13-didecanoate and 1-oleoyl 2-acetylglycerol, activators of protein kinase C (PKC), mimicked the effect of CHA, whereas the PKC inhibitor H7 blocked the action of CHA. Stimulation of A1 adenosine receptors also increased the production of diacylglycerol, an activator of PKC. Exogenous PKC added to the cytoplasmic face of inside-out patches also stimulated the Cl- channel. Alkaline phosphatase reversed PKC activation. These results show that stimulation of A1 adenosine receptors activates a 305-pS Cl-channel in the apical membrane by a phosphorylation-dependent pathway involving PKC. In previous studies, we showed that the protein G alpha i-3 activated the 305-pS Cl- channel (Schwiebert et al. 1990. J. Biol. Chem. 265:7725-7728). We, therefore, tested the hypothesis that PKC activates the channel by a G protein-dependent pathway. In inside-out patches, pertussis toxin blocked PKC activation of the channel. In contrast, H7 did not prevent G protein activation of the channel. We conclude that adenosine activates a 305-pS Cl- channel in the apical membrane of RCCT-28A cells by a membrane-delimited pathway involving an A1 adenosine receptor, phospholipase C, diacylglycerol, PKC, and a G protein. Because we have shown, in previous studies, that this Cl- channel participates in the regulatory volume decrease subsequent to cell swelling, adenosine release during ischemic cell swelling may activate the Cl-channel and restore cell volume.

Authors

E M Schwiebert, K H Karlson, P A Friedman, P Dietl, W S Spielman, B A Stanton

×

Full Text PDF

Download PDF (1.72 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts