Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115545

A restriction fragment of the C2 gene is a unique marker for C2 deficiency and the uncommon C2 allele C2*B (a marker for type 1 diabetes).

S Simon, Z Awdeh, R D Campbell, P Ronco 2nd, S J Brink, G S Eisenbarth, E J Yunis, and C A Alper

Center for Blood Research, Boston, Massachusetts 02115.

Find articles by Simon, S. in: PubMed | Google Scholar

Center for Blood Research, Boston, Massachusetts 02115.

Find articles by Awdeh, Z. in: PubMed | Google Scholar

Center for Blood Research, Boston, Massachusetts 02115.

Find articles by Campbell, R. in: PubMed | Google Scholar

Center for Blood Research, Boston, Massachusetts 02115.

Find articles by Ronco, P. in: PubMed | Google Scholar

Center for Blood Research, Boston, Massachusetts 02115.

Find articles by Brink, S. in: PubMed | Google Scholar

Center for Blood Research, Boston, Massachusetts 02115.

Find articles by Eisenbarth, G. in: PubMed | Google Scholar

Center for Blood Research, Boston, Massachusetts 02115.

Find articles by Yunis, E. in: PubMed | Google Scholar

Center for Blood Research, Boston, Massachusetts 02115.

Find articles by Alper, C. in: PubMed | Google Scholar

Published December 1, 1991 - More info

Published in Volume 88, Issue 6 on December 1, 1991
J Clin Invest. 1991;88(6):2142–2145. https://doi.org/10.1172/JCI115545.
© 1991 The American Society for Clinical Investigation
Published December 1, 1991 - Version history
View PDF
Abstract

There are three common C2 protein alleles in caucasians, C2*C, C2*B, and C2*Q0, with allele frequencies of 0.96, 0.03, and 0.01, as well as Sst I RFLP variants of 2.75, 2.7, 2.65, 2.55, and 2.4 kb, with frequencies of 0.017, 0.533, 0.358, 0.017, and 0.075. Thus, C2*C is informatively split by the RFLP. Of 94 nonrandomly ascertained caucasian complotypes, 77 contained C2*C, four contained C2*Q0, and 13 had C2*B. None of the C2*C-containing complotypes carried the 2.75 kb Sst I fragment and all of the complotypes with C2*B or C2*Q0 carried it. All of the C2*Q0 alleles were associated with C4A*4, C4B*2 in the complotype S042 as previously reported. C2*B was usually (9/13) in the complotype SB42, occasionally (1/13 each) in SB45, SB41, SB(4,3)0, and SB31. Thus, the association of the C2 2.75-kb fragment was with C2*B and C2*Q0, not with C4A*4, C4B*2, or even C4A*4 alone. The complotype SC42 was associated with the 2.65-kb Sst I fragment in four of five instances and in a single example with the 2.7-kb fragment. C2*B and C2*Q0 possibly had a common evolutionary ancestor complotype which carried the 2.75-kb Sst I fragment, and BF*S, C4A*4, and C4B*2. C2*B (particularly as the haplotype HLA-Bw62, SB42, DR4) is associated with type 1 diabetes but C2*Q0 is protective.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2142
page 2142
icon of scanned page 2143
page 2143
icon of scanned page 2144
page 2144
icon of scanned page 2145
page 2145
Version history
  • Version 1 (December 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts