Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Feedback inhibition of cyclic adenosine monophosphate-stimulated Na+ transport in the rabbit cortical collecting duct via Na(+)-dependent basolateral Ca++ entry.
M D Breyer
M D Breyer
Published November 1, 1991
Citation Information: J Clin Invest. 1991;88(5):1502-1510. https://doi.org/10.1172/JCI115460.
View: Text | PDF
Research Article

Feedback inhibition of cyclic adenosine monophosphate-stimulated Na+ transport in the rabbit cortical collecting duct via Na(+)-dependent basolateral Ca++ entry.

  • Text
  • PDF
Abstract

Arginine vasopressin (AVP) transiently stimulates Na+ transport in the rabbit cortical collecting duct (CCD). However, the sustained effect of both AVP and its putative second messenger, cyclic adenosine monophosphate (cAMP), on Na+ transport in the rabbit CCD is inhibitory. Because maneuvers that increase [Ca++]i inhibit Na+ transport, the effects of AVP and cell-permeable cAMP analogues, on [Ca++]i were investigated in fura-2-loaded in vitro microperfused rabbit CCDs. Low-dose AVP (23-230 pM) selectively stimulated Ca++ influx, whereas 23 nM AVP additionally released calcium from intracellular stores. 8-chlorophenylthio-cAMP (8CPTcAMP) and 8-bromo-cAMP (8-Br-cAMP) also increased CCD [Ca++]i. The 8CPTcAMP-stimulated [Ca++]i increase was totally dependent on basolateral [Ca++]. In the absence of cAMP, peritubular Na+ removal produced a marked increase in [Ca++]i, which was also dependent on bath [Ca++], suggesting the existence of basolateral Na+/Ca++ exchange. Luminal Na+ removal in the absence of cAMP did not alter CCD [Ca++]i, but it completely blocked the cAMP-stimulated [Ca++]i increase. Thus the cAMP-dependent Ca++ increase is totally dependent on both luminal Na+ and basolateral Ca++, suggesting the [Ca++]i increase is secondary to cAMP effects on luminal Na+ entry and its coupling to basolateral Na+/Ca++ exchange. 8CPTcAMP inhibits lumen-to-bath 22Na flux [JNa(l-b)] in CCDs bathed in a normal Ca++ bath (2.4 mM). However, when bath Ca++ was lowered to 100 nM, a maneuver that also blocks the 8CPTcAMP [Ca++]i increase, 8CPTcAMP stimulated, rather than inhibited JNa(l-b). These results suggest that cAMP formation initially stimulates CCD Na+ transport, and that increased apical Na+ entry secondarily activates basolateral Ca++ entry. The cAMP-dependent [Ca++]i increase leads to inhibition Na+ transport in the rabbit CCD.

Authors

M D Breyer

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 130 1
PDF 50 8
Scanned page 387 2
Citation downloads 55 0
Totals 622 11
Total Views 633
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts