Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Bicarbonate transport along the loop of Henle. I. Microperfusion studies of load and inhibitor sensitivity.
G Capasso, … , S Agulian, G Giebisch
G Capasso, … , S Agulian, G Giebisch
Published August 1, 1991
Citation Information: J Clin Invest. 1991;88(2):430-437. https://doi.org/10.1172/JCI115322.
View: Text | PDF
Research Article

Bicarbonate transport along the loop of Henle. I. Microperfusion studies of load and inhibitor sensitivity.

  • Text
  • PDF
Abstract

We microperfused the loop of Henle (LOH) to assess its contribution to urine acidification in vivo. Under control conditions (Na HCO3- = 13 mM, perfusion rate approximately 17 nl/min-1) net bicarbonate transport (JHCO3-) was unsaturated, flow- and concentration-dependent, and increased linearly until a bicarbonate load of 1,400 pmol.min-1 was reached. Methazolamide (2 x 10(-4) M) reduced JHCO3 by 70%; the amiloride analogue ethylisopropylamiloride (EIPA) (2 x 10(-4) M) reduced JHCO3 by 40%; neither methazolamide nor EIPA affected net water flux (Jv). The H(+)-ATPase inhibitor bafilomycin A1 (10(-5) M) reduced JHCO3 by 20%; the Cl- channel inhibitor 5-nitro-2'-(3-phenylpropylamino)-benzoate (2 x 10(-4) M) and the Cl(-)-base exchange inhibitor diisothiocyanato-2,2'-stilbenedisulfonate (5 x 10(-5) M), had no effect on fractional bicarbonate reabsorption. Bumetanide (10(-6) M) stimulated bicarbonate transport (net and fractional JHCO3-) by 20%, whereas furosemide (10(-4) M) had no effect on bicarbonate reabsorption; both diuretics reduced Jv. In summary: (a) the LOH contributes significantly to urine acidification. It normally reabsorbs an amount equivalent to 15% of filtered bicarbonate; (b) bicarbonate reabsorption is not saturated; (c) Na(+)-H+ exchange and an ATP-dependent proton pump are largely responsible for the bulk of LOH bicarbonate transport.

Authors

G Capasso, R Unwin, S Agulian, G Giebisch

×

Full Text PDF

Download PDF (1.58 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts