Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115244

Exon skipping during splicing of dystrophin mRNA precursor due to an intraexon deletion in the dystrophin gene of Duchenne muscular dystrophy kobe.

M Matsuo, T Masumura, H Nishio, T Nakajima, Y Kitoh, T Takumi, J Koga, and H Nakamura

Department of Pediatrics, Kobe University School of Medicine, Japan.

Find articles by Matsuo, M. in: PubMed | Google Scholar

Department of Pediatrics, Kobe University School of Medicine, Japan.

Find articles by Masumura, T. in: PubMed | Google Scholar

Department of Pediatrics, Kobe University School of Medicine, Japan.

Find articles by Nishio, H. in: PubMed | Google Scholar

Department of Pediatrics, Kobe University School of Medicine, Japan.

Find articles by Nakajima, T. in: PubMed | Google Scholar

Department of Pediatrics, Kobe University School of Medicine, Japan.

Find articles by Kitoh, Y. in: PubMed | Google Scholar

Department of Pediatrics, Kobe University School of Medicine, Japan.

Find articles by Takumi, T. in: PubMed | Google Scholar

Department of Pediatrics, Kobe University School of Medicine, Japan.

Find articles by Koga, J. in: PubMed | Google Scholar

Department of Pediatrics, Kobe University School of Medicine, Japan.

Find articles by Nakamura, H. in: PubMed | Google Scholar

Published June 1, 1991 - More info

Published in Volume 87, Issue 6 on June 1, 1991
J Clin Invest. 1991;87(6):2127–2131. https://doi.org/10.1172/JCI115244.
© 1991 The American Society for Clinical Investigation
Published June 1, 1991 - Version history
View PDF
Abstract

Recent molecular studies have shown that in a patient with Duchenne muscular dystrophy (DMD) Kobe, the size of exon 19 of the dystrophin gene was reduced to 36 bp due to the deletion of 52 bp out of 88 bp of the exon. The consensus sequences at the 5' and 3' splice sites of exon 19 were unaltered (Matsuo, M., et al. 1990. Biochem. Biophys. Res. Commun. 170:963-967). To further elucidate the molecular nature of the defect, we examined the primary structure of cytoplasmic dystrophin mRNA of the DMD Kobe patient across the junctions of exons 18, 19, and 20 by gel electrophoresis and sequencing of polymerase chain reaction-amplified cDNA. The mRNA coding for dystrophin was reverse transcribed using random primers, and the cDNA was then enzymatically amplified in vitro. The targeted fragment was smaller than expected from the genomic DNA analysis. By sequencing of the amplified product, we found that exon 18 was joined directly to exon 20, so that exon 19 was completely absent, suggesting that this exon was skipped during processing of the dystrophin mRNA precursor. All other bases in the amplified product were unaltered. Therefore, the data strongly suggest that the internal exon deletion generates an abnormally spliced mRNA in which the sequence of exon 18 is joined to the sequence of exon 20. We propose that the deletion is responsible for abnormal processing of the DMD Kobe allele. This finding has important implications regarding the determinants of a functional splice site.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2127
page 2127
icon of scanned page 2128
page 2128
icon of scanned page 2129
page 2129
icon of scanned page 2130
page 2130
icon of scanned page 2131
page 2131
Version history
  • Version 1 (June 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts