Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A plasma protease which is expressed during supramaximal stimulation causes in vitro subcellular redistribution of lysosomal enzymes in rat exocrine pancreas.
M Saluja, … , M M Lerch, M L Steer
M Saluja, … , M M Lerch, M L Steer
Published April 1, 1991
Citation Information: J Clin Invest. 1991;87(4):1280-1285. https://doi.org/10.1172/JCI115130.
View: Text | PDF
Research Article

A plasma protease which is expressed during supramaximal stimulation causes in vitro subcellular redistribution of lysosomal enzymes in rat exocrine pancreas.

  • Text
  • PDF
Abstract

The complex events by which digestive enzyme zymogens and lysosomal hydrolases are segregated from each other and differentially transported to their respective membrane-bound intracellular organelles in the pancreas have been noted to be disturbed during the early stages of several models of experimental pancreatitis. As a result, lysosomal hydrolases such as cathepsin B are redistributed to the subcellular zymogen granule-rich fraction and lysosomal hydrolases as well as digestive enzyme zymogens are colocalized within large cytoplasmic vacuoles. The current study was designed to create an in vitro system that would reproduce this redistribution phenomenon. Our results indicate that cathepsin B redistribution occurs when rat pancreatic fragments are incubated with a supramaximally stimulating concentration of the cholecystokinin analogue caerulein along with plasma from an animal subjected to in vivo supramaximal caerulein stimulation. Neither the plasma nor a supramaximally stimulating concentration of caerulein, alone, is sufficient to induce in vitro cathepsin B redistribution. The ability of the plasma to induce in vitro cathepsin redistribution is dependent upon its content of a 10,000-30,000-D protein and is lost by exposure to protease inhibitors. In vitro cathepsin B redistribution also occurs when rat pancreatic fragments are incubated with plasma obtained from opossums with hemorrhagic necrotizing pancreatitis caused by bile/pancreatic duct ligation.

Authors

M Saluja, A Saluja, M M Lerch, M L Steer

×

Full Text PDF

Download PDF (1.33 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts