Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Soluble surface proteins from Helicobacter pylori activate monocytes/macrophages by lipopolysaccharide-independent mechanism.
U E Mai, … , M J Blaser, P D Smith
U E Mai, … , M J Blaser, P D Smith
Published March 1, 1991
Citation Information: J Clin Invest. 1991;87(3):894-900. https://doi.org/10.1172/JCI115095.
View: Text | PDF
Research Article

Soluble surface proteins from Helicobacter pylori activate monocytes/macrophages by lipopolysaccharide-independent mechanism.

  • Text
  • PDF
Abstract

The inflammatory lesions associated with Helicobacter pylori gastritis and duodenitis contain large numbers of mononuclear cells. The close proximity of H. pylori to gastric mucosa suggests that the organism interacts with mononuclear cells, thereby modulating the inflammatory response. To investigate the role of monocytes/macrophages in this response, we examined the effect of whole H. pylori bacteria, H. pylori surface proteins, and H. pylori lipopolysaccharide (LPS) on purified human monocytes. Whole H. pylori and the extracted LPS induced expression of the monocyte surface antigen HLA-DR and interleukin-2 receptors, production of the inflammatory cytokines interleukin 1 and tumor necrosis factor (peptide and messenger RNA), and secretion of the reactive oxygen intermediate superoxide anion. Since H. pylori in vivo does not invade mucosal tissue, we determined whether soluble constituents of the bacteria could activate monocytes. Soluble H. pylori surface proteins, which are enriched for urease and do not contain LPS, stimulated phenotypic, transcriptional, and functional changes consistent with highly activated monocytes. These findings indicate that H. pylori is capable of activating human monocytes by an LPS-independent as well as an LPS-dependent mechanism. H. pylori activation of resident lamina propria macrophages and monocytes trafficking through the mucosa, leading to the secretion of increased amounts of inflammatory cytokines and reactive oxygen intermediates, could play an important role in mediating the inflammatory response associated with H. pylori gastritis and duodenitis.

Authors

U E Mai, G I Perez-Perez, L M Wahl, S M Wahl, M J Blaser, P D Smith

×

Full Text PDF

Download PDF (1.57 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts