Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The biosynthetic basis of adult lactase deficiency.
J Witte, … , H Korsmo, W Olsen
J Witte, … , H Korsmo, W Olsen
Published October 1, 1990
Citation Information: J Clin Invest. 1990;86(4):1338-1342. https://doi.org/10.1172/JCI114843.
View: Text | PDF
Research Article

The biosynthetic basis of adult lactase deficiency.

  • Text
  • PDF
Abstract

The intestinal brush-border enzyme lactase splits lactose into its component monosaccharides, glucose and galactose. Relative deficiency of the enzyme during adulthood is a common condition worldwide and is frequently associated with symptoms of lactose intolerance. We studied the synthesis and processing of lactase in normal and adult hypolactasic subjects using human intestinal explants in organ culture. Metabolic labeling experiments in our control subjects with [35S]methionine followed by immunoprecipitation, sodium dodecyl sulfate-polyacrylamide-gel electrophoresis, and fluorography demonstrated that newly synthesized lactase is initially recognized as a precursor molecule with a relative molecular weight (Mr) of 205,000. Over the course of several hours most of the labeled lactase was converted to a mature form of 150,000 Mr. Transiently appearing forms of 215,000 and 190,000 Mr were identified and were felt to represent intermediary species generated during intracellular processing. We identified two distinct alterations in lactase biosynthesis accounting for adult hypolactasia. Studies in three deficient subjects demonstrated markedly reduced synthesis of the precursor protein though posttranslational processing appeared identical to normal. Multiple studies in a fourth deficient subject demonstrated synthesis of ample amounts of precursor lactase but reduced conversion to the mature active form of the enzyme.

Authors

J Witte, M Lloyd, V Lorenzsonn, H Korsmo, W Olsen

×

Full Text PDF

Download PDF (1.28 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts