Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Inhibition of Na/H exchange in avian intestine by atrial natriuretic factor.
C E Semrad, … , E J Cragoe Jr, E B Chang
C E Semrad, … , E J Cragoe Jr, E B Chang
Published August 1, 1990
Citation Information: J Clin Invest. 1990;86(2):585-591. https://doi.org/10.1172/JCI114748.
View: Text | PDF
Research Article

Inhibition of Na/H exchange in avian intestine by atrial natriuretic factor.

  • Text
  • PDF
Abstract

Effects of 8-bromo-cGMP (8-Br-cGMP) and synthetic rat atriopeptin III (APIII) on sodium absorption by isolated chicken villus enterocytes and intact chicken ileal mucosa were determined. In isolated cells, both agents significantly decreased initial rates of influx of 22Na and caused a persistent decrease in intracellular pH (pHi); effects that are not additive to those caused by amiloride (10(-3) M). The ED50 for APIII was 0.3 nM. In intact mucosa, both 8-Br-cGMP (10(-4) M) and 5-(N-methyl-N-isobutyl)amiloride (MIBA) (10(-5) M) reduced JNams and JNa.net, their effects were not additive. APIII (10(-7) M) significantly increased cellular cGMP but not cAMP. Both 8-Br-cGMP (10(-4) M) and APIII (10(-7) M) stimulated a persistent increase in cytosolic calcium (Cai), which could be prevented by pretreating the cells with the cytosolic calcium buffering agent MAPTAM or with H-8, an inhibitor of cyclic nucleotide-dependent protein kinases. Furthermore, pretreatment of cells with H-8 or the calmodulin inhibitor, calmidazolium (CM), prevented the effects of 8-Br-cGMP and APIII on pHi. However, the pHi response to subsequent addition of the calcium-ionophore ionomycin was blocked only by CM and not by H-8. These data suggest that APIII and 8-Br-cGMP inhibit amiloride-sensitive Na/H exchange by increasing Cai, an event requiring activation of cGMP-dependent protein kinase.

Authors

C E Semrad, E J Cragoe Jr, E B Chang

×

Full Text PDF

Download PDF (1.48 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts