Studies in animal models have suggested that alterations affecting phospholamban-mediated stimulation of Ca2+ uptake by sarcoplasmic reticulum are involved in the pathophysiology of heart disease. A monoclonal antibody that binds to phospholamban and stimulates Ca2+ uptake was used to characterize phospholamban-mediated effects in human cardiac sarcoplasmic reticulum and to compare these effects in tissue from normal and failing hearts. Stimulation of Ca2+ uptake by anti-phospholamban monoclonal antibody simulated the effect of phosphorylation of phospholamban by cAMP-dependent protein kinase. Binding of anti-phospholamban antibody reduced the K0.5 of the Ca2(+)-transporting ATPase from 0.53 microM [( Ca2+]) to 0.29 microM [( Ca2+]), without affecting Vmax or nHill. At 0.2 microM Ca2+, stimulation was 1.93-fold in sarcoplasmic reticulum prepared from normal human left ventricular myocardium and 1.94-fold in sarcoplasmic reticulum prepared from the left ventricular myocardium of patients with heart failure resulting from idiopathic dilated cardiomyopathy. Stimulation of Ca2+ uptake in canine cardiac sarcoplasmic reticulum under identical conditions was 1.89-fold. Phospholamban-mediated stimulation of Ca2+ uptake in human cardiac sarcoplasmic reticulum is thus comparable in magnitude to that observed in other species and results from an increase in the apparent affinity of the Ca2(+)-transporting ATPase for Ca2+. The pathogenesis of heart failure in idiopathic dilated cardiomyopathy does not, however, appear to involve intrinsic alterations of this mechanism.
M A Movsesian, J Colyer, J H Wang, J Krall
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 114 | 1 |
86 | 17 | |
Figure | 0 | 1 |
Scanned page | 167 | 2 |
Citation downloads | 39 | 0 |
Totals | 406 | 21 |
Total Views | 427 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.