Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The p67-phox cytosolic peptide of the respiratory burst oxidase from human neutrophils. Functional aspects.
N Okamura, … , R M Smith, J T Curnutte
N Okamura, … , R M Smith, J T Curnutte
Published May 1, 1990
Citation Information: J Clin Invest. 1990;85(5):1583-1587. https://doi.org/10.1172/JCI114608.
View: Text | PDF
Research Article

The p67-phox cytosolic peptide of the respiratory burst oxidase from human neutrophils. Functional aspects.

  • Text
  • PDF
Abstract

Most cases of cytosol-defective chronic granulomatous disease are due to the deficiency of a 47-kD protein (p47-phox) whose phosphorylation normally accompanies the activation of the respiratory burst oxidase. Recently, a form of chronic granulomatous disease was described in which the failure of O2- production was associated with the absence of a 67-kD polypeptide (p67-phox) from the cytosol of affected neutrophils. Using neutrophils obtained from a patient with this form of the disease, we examined the function of p67-phox in the activation of the oxidase. Our studies showed that in whole p67-phox-deficient neutrophils, p47-phox was phosphorylated in a normal fashion. In the cell-free oxidase-activating system, the ability of the p67-phox-deficient cytosol to support oxidase activation was partly restored by the addition of p47-phox-deficient cytosol; the p67-phox-deficient cytosol, however, was not complemented by cytosol inactivated with NADPH dialdehyde, an affinity label previously found to block the NADPH-binding component of the oxidase. Despite these differences, the kinetic properties of the p67-phox-deficient cytosol closely resembled those of the p47-phox-deficient cytosol. Taken together with earlier findings, these results suggest that (a) in the neutrophil cytosol, p67-phox is at least partly complexed to p47-phox; (b) it is in the form of this complex that p67-phox participates in oxidase activation; and (c) p47-phox appears to be translocated from the cytosol to the plasma membrane during oxidase activation, but complexation to p67-phox is not necessary for this translocation, nor for the accompanying extra protein phosphorylation.

Authors

N Okamura, B M Babior, L A Mayo, P Peveri, R M Smith, J T Curnutte

×

Full Text PDF

Download PDF (1.14 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts