Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
1,25(OH)2 vitamin D3 stimulates membrane phosphoinositide turnover, activates protein kinase C, and increases cytosolic calcium in rat colonic epithelium.
R K Wali, … , M D Sitrin, T A Brasitus
R K Wali, … , M D Sitrin, T A Brasitus
Published April 1, 1990
Citation Information: J Clin Invest. 1990;85(4):1296-1303. https://doi.org/10.1172/JCI114567.
View: Text | PDF
Research Article

1,25(OH)2 vitamin D3 stimulates membrane phosphoinositide turnover, activates protein kinase C, and increases cytosolic calcium in rat colonic epithelium.

  • Text
  • PDF
Abstract

The hormonal form of vitamin D, 1,25(OH)2 vitamin D3 [1,25(OH)2D3], regulates colonic calcium absorption and colonocyte proliferation and differentiation. In this study, we have examined the effect of 1,25(OH)2D3 on membrane phosphoinositide turnover, protein kinase C activation, and regulation of intracellular calcium concentration [( Ca+2]i) in isolated rat colonic epithelium. In a concentration-dependent manner, 1,25(OH)2D3 stimulated breakdown of membrane phosphoinositides within 15 s, generating diacylglycerol and inositol 1,4,5-triphosphate (IP3). 1,25(OH)2D3 rapidly activated colonic protein kinase C, with maximal translocation of activity from the cytosol to the membrane occurring within 1 min of exposure to the secosteroid. Studies performed in isolated colonocytes with the fluorescent dye fura-2 demonstrated that 10(-8) M 1,25(OH)2D3 caused a rapid rise in [Ca+2]i which then transiently decreased before rising to a new plateau value. When these experiments were performed in a calcium-free buffer, an increase in [Ca+2]i was observed, but both the transient and secondary rise were diminished in magnitude, suggesting that 1,25(OH)2D3 may stimulate both release of intracellular calcium stores and calcium influx. 1,25(OH)2D3 stimulated [3H]thymidine uptake in rat colonocytes, 4 h after an in vivo injection. These studies indicate that 1,25(OH)2D3 exerts a rapid influence on membrane phosphoinositide metabolism which may mediate certain of the secosteroid's effects on colonocyte calcium transport and proliferation.

Authors

R K Wali, C L Baum, M D Sitrin, T A Brasitus

×

Full Text PDF

Download PDF (1.82 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts