Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Glucose transporter levels in spontaneously obese (db/db) insulin-resistant mice.
L Koranyi, … , M Mueckler, M A Permutt
L Koranyi, … , M Mueckler, M A Permutt
Published March 1, 1990
Citation Information: J Clin Invest. 1990;85(3):962-967. https://doi.org/10.1172/JCI114526.
View: Text | PDF
Research Article Article has an altmetric score of 3

Glucose transporter levels in spontaneously obese (db/db) insulin-resistant mice.

  • Text
  • PDF
Abstract

In the present study we examined mRNA and protein levels for the muscle/adipose tissue glucose transporter (GLUT-4) in various tissues of spontaneously obese mice (C57BL/KsJ, db/db) and their lean littermates (db/+). Obese (db/db) mice were studied at 5 wk of age, when they were rapidly gaining weight and were severely insulin resistant, evidenced by hyperglycemia (plasma glucose 683 +/- 60 vs. 169 +/- 4 mg/dl in db/+, P less than 0.05) and hyperinsulinemia (plasma insulin 14.9 +/- 0.53 vs. 1.52 +/- 0.08 ng/ml in db/+, P less than 0.05). The GLUT-4 mRNA was reduced in quadriceps muscle (67.5 +/- 8.5%, P = 0.02), but unaltered in adipose tissue (120 +/- 19%, NS), heart (95.7 +/- 6.1%, NS), or diaphragm (75.2 +/- 12.1%, NS) in obese (db/db) mice relative to levels in lean littermates. The GLUT-4 protein, measured by quantitative immunoblot analysis using two different GLUT-4 specific antibodies, was not different in five insulin-sensitive tissues including diaphragm, heart, red and white quadriceps muscle, and adipose tissue of obese (db/db) mice compared with tissue levels in lean littermates; these findings were consistent when measured relative to tissue DNA levels as an index of cell number. These data suggest that the marked defect in glucose utilization previously described in skeletal muscle of these young obese mice is not due to a decrease in the level of the major muscle glucose transporter. An alternate step in insulin-dependent activation of the glucose transport process is probably involved.

Authors

L Koranyi, D James, M Mueckler, M A Permutt

×

Full Text PDF

Download PDF (1.25 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 4 patents
18 readers on Mendeley
See more details