Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (101)

Advertisement

Research Article Free access | 10.1172/JCI114509

Ultrastructural localization of cytochrome b in the membranes of resting and phagocytosing human granulocytes.

A J Jesaitis, E S Buescher, D Harrison, M T Quinn, C A Parkos, S Livesey, and J Linner

Department of Chemistry, Montana State University, Bozeman 59717.

Find articles by Jesaitis, A. in: PubMed | Google Scholar

Department of Chemistry, Montana State University, Bozeman 59717.

Find articles by Buescher, E. in: PubMed | Google Scholar

Department of Chemistry, Montana State University, Bozeman 59717.

Find articles by Harrison, D. in: PubMed | Google Scholar

Department of Chemistry, Montana State University, Bozeman 59717.

Find articles by Quinn, M. in: PubMed | Google Scholar

Department of Chemistry, Montana State University, Bozeman 59717.

Find articles by Parkos, C. in: PubMed | Google Scholar

Department of Chemistry, Montana State University, Bozeman 59717.

Find articles by Livesey, S. in: PubMed | Google Scholar

Department of Chemistry, Montana State University, Bozeman 59717.

Find articles by Linner, J. in: PubMed | Google Scholar

Published March 1, 1990 - More info

Published in Volume 85, Issue 3 on March 1, 1990
J Clin Invest. 1990;85(3):821–835. https://doi.org/10.1172/JCI114509.
© 1990 The American Society for Clinical Investigation
Published March 1, 1990 - Version history
View PDF
Abstract

Affinity-purified rabbit anti-neutrophil cytochrome b light or heavy chain antibodies were used to immunocytochemically and biochemically localize cytochrome b in neutrophils and eosinophils. The antibodies were monospecific, recognizing polypeptides of 91 and 22 kD, respectively, on Western blots of whole neutrophil extracts. The antibodies were used in Western blot analysis of subcellular fractions of purified neutrophils to confirm that the distribution of cytochrome b spectral absorbance matched that of the two subunits. Thin sections of cryofixed, molecular distillation-dried granulocytes were labeled with the anti-cytochrome b antibodies, followed by incubation with biotin-conjugated secondary antibody, and final labeling with streptavidin-conjugated colloidal gold. Electron microscopy revealed that the cytochrome b light and heavy chains were localized primarily (80%) to 0.1-0.2-micron round or elliptical granule-like structures in neutrophils and 0.4-0.5-micron granules in eosinophils. Approximately 20% of the cytochrome b was localized to the surface, confirming the subcellular fractionation studies. Double staining experiments on the neutrophils, using polyclonal rabbit anti-lactoferrin antibody, indicated that the cytochrome-bearing structures also contained lactoferrin and thus were specific granules. When the analysis was performed on neutrophils that had phagocytosed Staphylococcus aureus, cytochrome b was found in the phagosomal membrane adjoining the bacterial cell wall.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 821
page 821
icon of scanned page 822
page 822
icon of scanned page 823
page 823
icon of scanned page 824
page 824
icon of scanned page 825
page 825
icon of scanned page 826
page 826
icon of scanned page 827
page 827
icon of scanned page 828
page 828
icon of scanned page 829
page 829
icon of scanned page 830
page 830
icon of scanned page 831
page 831
icon of scanned page 832
page 832
icon of scanned page 833
page 833
icon of scanned page 834
page 834
icon of scanned page 835
page 835
Version history
  • Version 1 (March 1, 1990): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (101)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts