Although the presence of anti-DNA antibody is a hallmark of systemic lupus erythematosus (SLE), neither the subsets of B cells that secrete anti-DNA antibody nor the stimuli responsible for the induction of anti-DNA secretion is known. In particular, the role of CD5+ B cells in human SLE, a distinct subpopulation of antibody-secreting cells shown previously to be a source of anti-DNA antibody in murine models of SLE, is unknown. To approach these questions, we developed a sensitive enzyme-linked immunospot (ELIspot) assay to measure spontaneous secretion of antibody to single-stranded (ss) DNA, double-stranded (ds) DNA, tetanus toxoid, and polyclonal immunoglobulin (Ig) by purified CD5+ and CD5- B cells of 15 SLE patients and 15 healthy control subjects. The B cells of only 1 of 15 healthy subjects secreted a significant level of anti-ssDNA antibody, and none secreted anti-dsDNA. By contrast, in the majority of SLE patients both CD5+ and CD5- B cells secreted IgG and/or IgM anti-ssDNA as well as anti-dsDNA antibody. Further analysis of the anti-ssDNA response revealed that the level of IgG and IgM anti-DNA antibody secretion by CD5- B cells correlated closely with the level of polyclonal Ig production by the same subpopulation (r = 0.81 and 0.70, respectively). In contrast, production of anti-DNA by CD5+ B cells occurred independently of polyclonal Ig production by both CD5+ and CD5- B cell subpopulations. These results suggest that in human SLE there exist two anti-DNA antibody-producing B cell subpopulations with distinct induction mechanisms: one (CD5+), which independently secretes anti-DNA, and another (CD5-), which produces anti-DNA as an apparent consequence of polyclonal B cell activation.
N Suzuki, T Sakane, E G Engleman
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 170 | 0 |
72 | 26 | |
Scanned page | 412 | 5 |
Citation downloads | 39 | 0 |
Totals | 693 | 31 |
Total Views | 724 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.