In a previous study we provide evidence for a circuitous pathway by which circulating plasma proteins enter megakaryocyte granules by an endocytic mechanism and are returned to the circulation in platelets (1987. Proc. Natl. Acad. Sci. USA. 84:861-865). Horseradish peroxidase (40,000 mol wt) was injected into guinea pigs and its uptake into megakaryocyte organelles examined by electron microscopy and cytochemistry. In the present study we tested the ability of guinea pig megakaryocytes to take up intravenously injected albumin, IgG, and fibrinogen. We used two types of proteins to study the endocytic pathway: (a) heterologous human proteins, which were detected immunohistochemically using antibodies that do not crossreact with the native guinea pig counterparts; and (b) human and guinea pig proteins labeled with the small (250 mol wt), inert molecule, biotin, which were detected using an antibody against biotin. We detected all three of the injected proteins in bone marrow megakaryocytes in patterns identical to those of native counterparts. The injected protein consistently appeared in platelets 24 h later and was secreted in response to thrombin. We conclude that there are at least two mechanisms by which guinea pig megakaryocyte granules acquire proteins (a) endogenous synthesis, as demonstrated by others, and (b) endocytosis of plasma proteins synthesized by other types of cells.
P J Handagama, M A Shuman, D F Bainton
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 120 | 2 |
56 | 25 | |
Scanned page | 333 | 1 |
Citation downloads | 48 | 0 |
Totals | 557 | 28 |
Total Views | 585 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.